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ABSTRACT

Normal and aberrant cognitive functions are the result of the dynamic interplay between large-scale neural cir-
cuits. Describing the nature of these interactions has been a challenging task yet important for neurodegenerative
disease evolution. The origin of Alzheimer’s disease lies in the hippocampus and subsequently diffuses to the
temporal, parietal and prefrontal cortices. Determining the sources of dementia is crucial to the prediction of
the disease evolution and choice of treatment. State-of-the-art method for determining dementia progression
are network diffusion models derived from the heat equation without diffusion sources. We propose a different
research avenue based on epidemic modeling to localize the disease sources. These models may better charac-
terize the empirical spread of dementia through brain regions. We explore an estimation algorithm based on a
susceptible-infected (SI) epidemic algorithm and a network diffusion model for comparison purposes emulating
the disease evolution from sources (susceptible) to non-recovered (atrophy, infected) areas. The goal is to iden-
tify the probable disease diffusion sources, which we accomplish via a ranking heuristic based upon steady-state
convergence times. Graph centrality measures are employed to provide a baseline for further comparison. Our
results applied on structural brain networks in dementia suggest that epidemic models are able to accurately
describe the different node roles in controlling trajectories of brain networks comparably to the existing diffusion
approach.
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1. INTRODUCTION

Understanding the cause and progression of Alzheimer’s disease (AD) is one of the most challenging research
problems to be solved in the important area of neurodegenerative diseases. Two underlying hypotheses, the
amyloid and tau hypotheses, are currently employed when it comes to describe the mechanism of AD. AD induced
changes are shown in the functional and structural connectivity of brain networks. Static and more recently
dynamic graph theory has been employed to characterize these changes and derive theory-driven biomarkers to
be used in disease prediction at the level of the individual subject.

The dynamics of disease progression can be described by diffusion mechanisms taking place on the brain
network. There are two main paradigms that could be employed for disease evolution: (1) the heat-diffusion
model and (2) the information-centric network paradigm in connection with an epidemic spreading model. Both
paradigms comprise the transmission of disease agents (misfolded β-amyloid and τ -protein) over the connectome.

In previous work, the diffusion model was operating without determining the diffusion sources and therefore
was insufficient for capturing trajectories of neurodegenerative brain diseases of nonlinear nature.7–9 A detailed
partial differential disease model of stochastic nature was presented in.2,12,13
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Figure 1: (a) A schematic representation of a network under the k-shell decomposition.3 Shells of same degree
nodes. Nodes within the core of the network, i.e. with a high k-Shell index, are considered to be good disease
spreaders. (b) Convergence of the diffusion model on a random Barabasi-Albert graph to the prescribed πdiffusion
over 1, 10, and 100 iterations. All edges are treated as of equal weight. Node size corresponds to larger x(v, t)
.

Advanced control theory mechanisms have been a useful tool when applied in connection with graph theo-
retical techniques to detect brain connectivity and topology changes associated with neurodegenerative diseases.
Pinning control mechanisms has been employed to determine the leader or driver nodes that are relevant for
disease evolution.5,10,11

In this paper, we propose a complex dementia disease evolution system by identifying the diffusion sources4,14

under the two paradigms of diffusion model and epidemic spreading and determine the diffusion regions for
healthy and different stage-dementia subjects in structural brain networks. We employ a heat diffusion model
and susceptible-infected (SI) model. We compare these results with brain regions in the structural networks
that can act as drivers and move the system (brain) into specific states of action. These influence the cognitive
functions. Our results will prove that the experimental neurological findings are confirmed by showing the correct
diffusion sources for AD.

2. METHODS

The structural brain connectivity network is described by a graph G(V,E) which has a set of vertices V =
{v1, v2, · · · , vN} representing the gray matter structures and a set of edges E = {e1, e2, · · · , eN} describing their
connectivity. The disease-causing agent at time t and at each node is given as the vector x(t) = {x(v, t), v ∈ V }.
The diffusion model is described by the following ”heat equation” model:

~x(tn+1) = (I − βLT )~x(tn) + ~ctn+1
(1)

with L being the graph Laplacian matrix and I an N × N identity matrix. The ~c term allows us to simulate
network inflow/outflow or hold the value of some particular vi constant. β ≥ 0 is a hyperparameter controlling
the diffusion speed. Each iteration can be efficiently computed using sparse matrix libraries.

The deterministic SI epidemic model on a weighted graph with normalized adjacency matrix A ∈ RN×N and
normalized weight matrix W ∈ RN×N is described by this equation:

~x(tn+1) = ~x(tn) + β(W ◦A)~x(tn) ◦ (1− ~̃x(tn)) (2)

where β > 0 is the infection rate. We assume A possesses self-loops. It has been shown that the solution of
this system when linearized is exponentially stable.1 In the SI model, the infected nodes of the graph network
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Figure 2: Comparison of set of source nodes found based on different graph measures for (a) healthy controls,
(b) MCI and (c) AD. Figure adapted from.6

represent the disease sources. The stochastic SI epidemic model on the same weighted graph is described by this
equation:

P (x(vi, tn+1) = 1|x̃(tn)) = Bern{x(vi, tn) + β(1− x(vi, tn))(W ◦A)i,:x̃(tn)} (3)

with x(v, t) now being a binary random variable. The corresponding state space of the deterministic algorithm
is used to define a Bernoulli distribution from which we sample ~x(v, tn+1) at each iteration. This algorithm may
be accelerated by querying only infected nodes.

It has been shown that the community structure of a network (Fig. 1a) can influence the disease spreading
process.3 In information spreading networks, highly interconnected sub-communities play a key role in this
regard. One modality to describe the community structure is the k-core of the network and the corresponding
k-shell index of a node in the network. It has to have the highest value k such that the node is still a member
of the respective k-core.3 We compute this and other centrality measures to provide a ”naive” node ranking.

To identify the disease sources for both diffusion and SI model, we apply a novel ranking algorithm from
the knowledge of the structural brain network. Both models are guaranteed to converge to some stationary
distribution π. Given x(vi, t) = 1, x(vj , 0) = 0 ∀vj 6= vi ∈ V , we know a priori that πdiffusion = 1 (Fig. 1b) and
πSI = 1. Our approach operates on the following hypothesis: a constant point source placed at an influential
node (i.e: nodes which, when infected, are most likely to result in wide disease transmission) will intuitively result
in convergence to π in fewer iterations. By recording the convergence rate for all v ∈ V , we are able to construct
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Figure 3: Diffusion (left) and SI (right) normalized convergence times for (a) healthy controls, (b) MCI and (c)
AD. Edge thickness corresponds to weight.

a quantitative ranking of each node wherein vi is considered more influential than vj iff. the corresponding point
source diffuses across the network more efficiently. We employ Pearson correlation coefficient and Kendall’s Tau
to assess hyperparameter dependencies.

3. RESULTS

We applied the theoretical models on three structural (MRI) connectivity networks for control (CN), mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects derived from a subset of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort in.6 For the structural data, the connections in the graph show
the inter-regional covariation of gray matter volumes in different areas. These networks only consider 42 out of
the 116 from the AAL in the frontal, parietal, occipital and temporal lobes. The nodes in the graphs represent
the regions while the links show if a connection is existing between these regions or not.

Figure 2 (a)-(c) shows the sources found on the structural data for (A) controls, (B) MCI and (3) AD based
on various existing centrality measures.

The source nodes found based on the betweenness centrality measure are fewer for healthy controls with
location in the frontal and temporal lobe. There is a shift in the number of source nodes between CN and, MCI
and AD. We find an additional node in the hippocampus in MCI and one in the temporal lobe for AD. This
confirms the clinical observations that AD originates in the hippocampus. The source nodes for the stochastic
SI and diffusion model for CN, MCI and AD are given in the Table 1.
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Healthy Controls MCI AD

Diffusion model 29, 33, 41, 42 29, 33, 34, 39 29, 33, 39, 41
Stochastic SI model 9, 11, 29, 33 29, 33, 34, 40 29, 33, 39, 41

Table 1: Nodes representing the top-k sources of diffusion for the stochastic SI model and the diffusion model
for CN, MCI and AD subjects. Node IDs refer to the AAL atlas region IDs.

(a) (b)

Figure 4: Comparison of set of source nodes found based on different graph measures for (a) healthy controls,
(b) MCI and (c) AD. Node IDs refer to the AAL atlas region IDs.

Table 1 shows that there is a shift of dementia sources (nodes) from the temporal lobe for MCI to the
parahippocampal area for AD thus confirming the clinical observations. From Figure 3 (a)-(c), we see that the
distribution of convergence times is negatively skewed, particularly for the AD case. This is most pronounced
for the diffusion model, whereas SI produces a more even spread in all three subjects. The two models give
equivalent top-4 rankings for AD. MCI differs on whether v39 or v40 occupies the rank-4 position; these nodes
are of identical degree and are most strongly connected to each other, so they are naturally similar in rank. In
the Control patient, diffusion emphasizes nodes in the 1-neighborhood of v33, N1(v33). SI instead highly ranks
the {v9, v11, v33} clique. Figure 4 shows the location of the sources identified in Table 1.

4. CONCLUSIONS

In this paper, we applied a novel ranking algorithm to identify for the first time in literature the sources of disease
diffusion in dementia in structural brain networks that are relevant for understanding AD in its evolution. The
most important aspect of the algorithm is that it employs the convergence properties of the structural-temporal
diffusion dynamics. The algorithm is tested based on two models, the heat diffusion model and the stochastic
SI epidemic model. The obtained results confirm clinical findings regarding the origin of AD and its evolution
as well as the transition from MCI to AD. The relevance of the proposed method lies in simulating longitudinal
studies for dementia cohorts and estimating the probable disease sources from neural connectomes data.
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