PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A scalable communication
abstraction framework for internet of
things applications using Raspberry
Pi

Mohebali, Behshad, Tahmassebi, Amirhessam, Gandomi,
Amir, Meyer-Baese, Anke, Foo, Simon Y.

Behshad Mohebali, Amirhessam Tahmassebi, Amir H. Gandomi, Anke Meyer-
Baese, Simon Y. Foo, "A scalable communication abstraction framework for
internet of things applications using Raspberry Pi," Proc. SPIE 10652,
Disruptive Technologies in Information Sciences, 1065205 (9 May 2018); doi:
10.1117/12.2306596

SPIE. Event: SPIE Defense + Security, 2018, Orlando, Florida, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Scalable Communication Abstraction Framework for
Internet of Things Applications using Raspberry Pi

Behshad Mohebali*”", Amirhessam Tahmassebi®, Amir H. Gandomi®, Anke Meyer-Baese, and
Simon Y. Foo4

2Department of Electrical Engineering, Center for Advanced Power Systems, Florida State
University, Tallahassee, Florida, USA
PDepartment of Scientific Computing, Florida State University, Tallahassee, Florida, USA
“School of Business, Stevens Institute of Technology, Hoboken, New Jersey, USA
dDepartment of Electrical and Computer Engineering, FAMU-FSU College of Engineering,
Tallahassee, Florida 32310-6046, USA

ABSTRACT

The Internet of Things concept is described as a network of interconnected physical objects capable of gather,
process, and communicate information about their environment, and potentially affect the physical world around
them through their sensors, embedded processors, communication modules, and actuators, respectively. Such a
network can provide vital information on events, processes, activities, and future projections about the state of
a distributed system. In addition, it can give the devices inside the network awareness about their environment
far beyond the range of their dedicated sensors through communication with other devices. In most cases, such
network consists of devices with different processing and communication capacities and protocols, from a variety
of hardware vendors. This paper introduces an abstracted messaging and commanding framework for smart
objects, aimed towards making the network capable of including various communication standards. This issue
is addressed by proposing a messaging structure based on JavaScript object notation (JSON) format so the new
devices connecting to the network can introduce themselves to the central coordinator. The introduction includes
a list of functionalities that the device is capable of, and the information it needs to carry out those tasks. This
platform makes the network capable of incorporating different devices with various purposes and functions with
ease and flexibility. Having a fast, reliable, and scalable communication scheme is critical for realization of a
robust and flexible network.

Keywords: Raspberry Pi, Arduino, Internet of Things, RESTful Web Services

1. INTRODUCTION
1.1 Raspberry Pi System on a Chip

Raspberry Pi, as a fully functional and ridiculously inexpensive little computer has lots of potentials and appli-
cations in real life to be used as desktop PC, wireless server, media center, gaming machine, game server, robot
controller, stop motion camera, radio station or in wider fields such as cloud computing, multi-core distributed
scheduling, parallel computing, and Internet of Things.

In 2013, Tso et al.! used 56 Model B Raspberry Pi to construct a 4-rack Cloud Data Center cluster. The
multi-root tree topology is used to form the cluster, in which all the Raspberry Pi devices in the same rack
are connected to a designated Top of Rack (ToR) switch. Each Pi supports three concurrent hosts having
isolated file systems. The cluster is introduced as a cost-effective platform for research on various aspects of
Cloud Computing. One advantage of using PiCloud is that the novel approaches can be operated on actual (yet
scaled down) hardware platform instead of simulation tools, which usually isolate a certain aspect of the Cloud
and may make assumptions that are far from reality. Virtual Machine management, resource allocation, novel

* Corresponding Author: Behshad Mohebali
E-mail: bmohebali@fsu.edu

Disruptive Technologies in Information Sciences, edited by Misty Blowers, Russell D. Hall, Venkateswara R. Dasari
Proc. of SPIE Vol. 10652, 1065205 - © 2018 SPIE - CCC code: 0277-786X/18/$18 - doi: 10.1117/12.2306596

Proc. of SPIE Vol. 10652 1065205-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

network architectures, and power consumption measurement and optimization (which is difficult to predict using
simulators)? are among the Cloud Computing research topics that can benefit greatly from PiCloud as a testbed.
In addition, the researchers are considering the possibility of Cloud Computing without virtualization, in which
the actual physical node is rented out to the client instead of a virtual node. This is feasible only with smaller
and cheaper processors such as Raspberry Pi. At last the cost of a 56 machine testbed using commodity x86
servers and PiCloud are compared to show the cost-effectiveness of PiCloud as a replication of the architecture
of a Cloud Data Center. The performance of the cloud is not measured or presented in this work.

GEEE DRSS
N N/

3
master node \ / i < 5

internet — / \ /.
\\.

JIN /N\
BEEE BEEE

Figure 1: Network topology used in® to form a cluster with 300 Raspberry Pie devices.?

While the cloud DC proposed in' is meant mostly for cloud computing research,® investigates the benefits and
challenges of having a practical cloud made of Pies capable of handling computationally intensive operations. The
limited processor speed and SD card speed and life span are cited as such challenges. However, the affordability
and energy efficiency are listed as the benefits. In addition to their low speed, the SD card will distribute the
storage capacity over the whole network. To address this issue, a common file system is provided for the cluster
using a Network Attached Storage. The cluster is made of 300 RPies in a star network as depicted in Figure 1.
Different parts of the software running on the nodes are optimized to reduce the load on each RPi. The OS used
in this project is a minimal version of Debian 7, created by the authors, which has only the necessary features.
Also, it is argued that some of the open-source cloud computing platforms such as OpenStack can put strain on
the scarce resources of RPi. As a result, it makes sense to develop customized platforms that can centralize the
management of the resource pool, configure the network dynamically, monitor the whole network, and provide
online access to the resources. The authors envisioned using this cluster as an inexpensive testbed for research!
and also a mobile data center cluster that can be deployed in remote locations.

Proc. of SPIE Vol. 10652 1065205-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

In 2015, Schot? investigated the possibility of implementing a Hadoop server on a RPi cluster. Apache
Hadoop is a widely used open-source framework that uses map/reduce methods, developed for the first time at
Google,® to process large distributed data on a cluster.® Hadoop framework has four major modules:

Hadoop common libraries and utility packages used by other modules

Hadoop Distributed File System (HDFS), that stores the data on commodity hardware.

Hadoop YARN, the resource management layer of Hadoop

e Implementation of map/reduce methods.

With only eight Pies, size of the cluster used in* is considerably smaller than the former examples. However, it
serves the purpose as a proof of concept. The Pies run DietPi, a lightweight version of Raspbian optimized for
minimal usage of hardware resources.

1.2 Internet of Things

The Internet of Things is described as a smart infrastructure that connects the objects and people.” Since
no specification about the communication protocol or the type of devices that should be used is included, it
is logical to expect that any communication protocol might be utilized to connect different types of electronic
devices depending on the circumstances. Although this can liberate the design engineers and network architects,
it brings up new challenges that must be addressed. Therefore, heterogeneity (Having the ability to support
and manage variety of technologies, devices, services, and environments)® and scalability (ability to handle large
number of devices and services into the network) are listed as the main requirements of an IoT system? which
should be dealt with on architecture level.

In addition, an IoT system should require minimal (if any) human intervention for configuration and setup.
This means that more effort should be allocated to make the devices self-governing in terms of communication.
In other words, the ability to set up a new device by merely connecting the device to the network. This feature
can decrease the money and time spent for setting up a network in environments where there is a need for high
number of simple sensors, such as a shipboard power system,'% ! or a mobile robot swarm swarm.'?

Previously, Borgia,” Taleb, and Kunz'® compiled a list of the IoT communication features, which can be
summarized as:

e Reliability: The ability to ensure accurate delivery of the data from the source to the destination.

e Security: Having safe connection between the devices with ”anonymity of identity and location”® while
being able to detect abnormal behavior or attack.

e Scalability: Ability to incorporate large number of devices into the network and handle transmission
between them.

e Robustness: Ability to maintain connection under adverse circumstances such as bad weather, disruption
of the primary communication path, or mobility of one or more devices in the network.

e Flexibility: Ability to support and incorporate multiple types of networks and different communication
modes. Ability to expand the functionality in case of needing special purpose packages.

Choosing a network type for establishing connection between two devices is a trade-off between these features.
The reliability and security of a network can be mostly addressed in lower layers such as data link layer and
network layer, respectively. This can be seen in CAN bus!* , Ethernet, Zigbee, WiFi, etc. The higher layers,
such as application layer, can affect the scalability and flexibility of the network. This paper focuses on a
communication establishment approach that can set up newly connected devices and make them ready for
operation in a dynamic fashion.

Proc. of SPIE Vol. 10652 1065205-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Sensor 1

Air
Temperature \

Sensor Actuator 1 HVAC Unit <<<]>>> Central Unit
J

e User interface K ———
Cooler MCU Communication Processing
Module . and
. Communication Web
Actuator? J . Application At home user
. |
Heater I
Actuator 3 Sensor 2 Router
. . Light sensor
Lights in Bedroom 1
bedroom1

I [

Communication)

l l ke Module

Sensor 3 Actuator 4

Light sensor Lights in l l
Living room Living room

Sensor 4 Actuator 5

Garage

---------------------- ~ Door
door opener

status

Ambiance Light Controller (((I)) :
MCU Com’\rllnudni::ation)
ocue Garage door control <<<I)>>

Online user

—fm e ———

......................

Figure 2: An example of an IoT home automation network. The network consists of different types of devices
communicating on different channels.

The rest of the paper is organized as follows. Section two discusses the objectives that the proposed approach
is aspire to achieve and how it does it. Section three gives a brief description of the hardware used for testing the
communication approach and the developed software for two communicating systems in the network. Section
four illustrates the way that the the network coordinator recognizes a new device and adapts its user interface
according to the device capabilities. Lastly, some suggestions are offered for the future work.

2. METHODOLOGY

The objectives that are being pursued are:

e To form a mechanism for communication between smart objects that is independent of the technology or
hardware vendor as long as both sides of the connection support it.

e To be able to dynamically and seamlessly integrate objects into the network at run time.

e To be able to handle new types of sensors or actuators in the future without applying changes to the
underlying framework.

To achieve these goals an approach inspired by Service-Oriented Architecture (SOA)'® web services is adopted.
Although SOA is not a new concept, applying its principles to IoT applications have several advantages. Such an
approach lets the designer hide the details of the functionality of a given device behind an interface that is shared
with the network coordinator in the beginning of the communication. By using SOA, all the functionalities in
the network (such as sensing, moving, recording, etc.) can be treated as loosely coupled services. In addition,
adhering to SOA principles means having a mechanism with which the devices can publish their available
functionalities and their inputs, outputs, and calling structure in the form of services.

Proc. of SPIE Vol. 10652 1065205-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

{ <?xml version="1.0" encoding="UTF-8" ?>

"name":"table", <name>table</name>
"height": 13, <height>13</height>
"width": 20, <width>20</width>
"length": 13, <length>13</length>
"color":"White", <color>White</color>
"material":"wood" <material>wood</material>

Figure 3: A comparison between JSON and XML. Both of these examples are representing the same information.
The JSON has 85 characters while XML has 154 characters, counting out the spaces.

A self-configuring process was developed to facilitate the connection of a new device into an already operating
network. This process can be summarized as:

1. New device is connected to the network (all the transmission connections are in place) and is powered on.

2. The device starts by sending generic packages to request permission to publish the service description. This
is done periodically with low frequency so it does not occupy much bandwidth from the network.

3. The coordinator receives the request or permission and sends ”permission granted” package.

4. Upon receiving the permission, the device sends a ”service description” package containing its name,
description (to show to the human user), and a full description of services. The service description contains
the name of the service, the name and type of the inputs and outputs, and a brief description about the
service.

5. The coordinator receives the service description package and updates the list of available services on the
UI and web service.

The conventional format used for communication data in SOA web services is Extensible Markup Language
(XML). However, due to limited bandwidth and speed in IoT networks, the XML seems unnecessarily verbose. To
address that issue, JavaScript Object Notation (JSON) is used in this project. In addition, due to popularity of
JSON format, its parser tools are available in most of the programming languages. Figure 3 shows a comparison
between a JSON file and an XML file which represent the same object but the JSON uses 69 characters less
than XML to carry the same amount of information.

Note that some services, such as reading a sensor or a parameter, may not have any inputs from the coordina-
tor (or user). However, another group of services that are meant to control an actuator may only have inputs and
no output. Below is an example of an introduction JSON message for a device that controls the speed of a fan in a
bedroom and also has a temperature sensor. This device offers two services. One for setting the speed of the fan,
which takes the speed and direction of rotation (true for Clock-wise, false for Counter clock-wise) as its inputs and
has no output, and one for reading the temperature sensor that only has an output for the obtained temperature.

9,993

"name”: ”Bedroom ventilation control”, "type”:”introPackage”, "desc”: ”Control the bedroom ventilation.”,

"services”: [{ "name”: ”Change Speed”, ”desc”: ”Change the speed of the bedroom fan (RPM).”, ”inputs”:
[{ "name”: ”speed”, "type”: 7int” }, { "name”: direction CW”, "type”’: "boolean” }], Poutputs”: [| }, {
"name”: ”"Read Temperature”, "desc”: ”Measure the room temperature”, ”inputs”: [], ”outputs”: [{ "name”:

”Temperature”, "type”: "double” }]}]}

Figure 4 shows the generic structure of this JSON message. The number of the services and their parame-
ters depend on the functionality and role of the device in the network.

Proc. of SPIE Vol. 10652 1065205-5

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Device

Service inputs input1

outputs

— input2

Description
outputs output1

type

inputs

Description

Service Description

Figure 4: The structure of the JSON message used for publishing the available services by the newly connected
device. The name and description are used for prompting the user when getting the inputs for the services. The
type property declares that this JSON is an introduction package that contains the information on the device
services.

After the coordinator (in this case the Raspberry Pi) establishes the connection and becomes aware of the
presence and available services of the newly connected device, it can call for execution of a service using this
JSON package:

"name”: ”Change Speed”, ”type”: "request”, ”parameters”: [{ "name”: ”speed”, "value”: 60 }, { "name”:
"direction CW”, "value”: true }] }

This JSON instructs the bedroom fan controller device to set the speed of the fan to 60 RPM clock-wise. The
type "request” is used for commands coming from the coordinator. After getting the request for executing the
service, the device sends a package informing the coordinator of succeeding (or failing) in executing the command:

b2 ”

{ ”"name”: ”Change Speed”, "type”: "response”, "status”: true }

3. SYSTEM DESCRIPTION

To demonstrate the efficacy of the approach a simple testbed that can be used in home automation applications
is assembled. Figure 5 shows the schematic of the system, which consists of:

A Raspberry Pi SoC, which acts as the coordinator in the network.

An Arduino Uno module, which acts as the local controller that will be connected to the network.

A step motor driver, which gets the clock signal and the direction of rotation from Arduino and generates
signal for four inputs of the step motor.

Step motor, which is the actuator.

Proc. of SPIE Vol. 10652 1065205-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

On-site user
® Coordinator

ARDUINO

RESTful
web
services

Clock &
Direction

Step motor

Online user
Step motor

Driver

Figure 5: A schematic view of the experiment. The Raspberry Pi SoC runs a RESTful API that makes it able
to receive requests from Internet. If the user is at the same location as the also can interact with the system
using the graphic interface.

Figure 6 shows the hardware setup. The software on the RPi has three major parts:

e Hardware Controller Module (HCM): This is the core of the software which consists of three modules.
First, the logic for organizing the information about the current status of each local device connected to
the network, their available services, and their means of communication (whether it is serial port, CAN,
LAN, etc.). Second, the command translator, which receives the calls for services from user interface or the
web and constructs the request JSON. Third, a general utility module that is responsible for interacting with
the hardware. This module is used as an interface between hardware and software by getting the requests
for controlling the General Purpose Input/Output (GPIO) pins or sending data over communication ports.

Figure 6: The hardware setup used to demonstrate the application of the communication framework. The
Arduino module controls the step motor driver and is connected to RPi GPIO via its UART serial port. Step
motor shaft is connected to a fan which is controllable by the user input into the RPi user interface.

Proc. of SPIE Vol. 10652 1065205-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

e User Interface (UI): The UI has three responsibilities. First, presenting the active devices and their available
services to the user along with the needed parameters for each service. Second, collecting the user inputs
and communicating them with the HCM. Third, getting the information on active and newly connected
devices as well as their available services and updating the interface according to those services and their
parameters. The Ul is developed using Java Swing widget toolkit.

e RESTful web services: A collection of services designed using REST architecture!® and exposed to the web
that can be invoked from the Internet. This will give the user the ability to call any service in the network
from any location provided Internet connection is available. An embedded instance of Apache Tomcat

The software on the Arduino module, written in C, is simpler than the RPi software due to its limited role
and responsibilities. It has a block for capturing, recognizing, and constructing a JSON package, and also an
interpreter that gets the request from the coordinator, determines which service is called, and calls the service
with given parameters.

4. RESULTS AND DISCUSSION

Figure 7 (a) shows the initial version of the coordinator UI before the local controller is connected. Since no
device is present in the network the device menu does not have any option available. After connecting the local
controller to the network, the coordinator will dynamically update the Ul and gives user access to the services
of the controller. The final state of the UT after the update is illustrated in Figure 7 (a).

,I () N ‘ﬂ L[__:L’ ’* @ pi@ra ':' ¢am L[EL’)*' @ ,_ pi@ra..

&JCoordi_“ LEJCoordi

| Coordinator Pa = [@ &3 Coordinator Pan x
Devices Devices
| |v| |Bedraam ventilation control |v|
)
Change Speed Read Temperat...
speed: No Input

Temperature:

direction Cw []

send Request Send Request

(a) Before (b) After

Figure 7: The coordinator Ul (a) before and (b) after connecting the local controller device. The coordinator
will dynamically update the UI based on the information that comes from the local controller. Every time a new
device is connected to the network the ”Devices” drop down menu is updated. By selecting each device from
that menu the user can access the services that the local controller offers.

This paper introduces an expandable framework for dynamically establishing connection between a coordi-
nator and a local controller device in an IoT network. Each device was modeled as a collection of services that
can be called by the coordinator (which takes inputs from user). The structure of the message that carries
the information on available services that a newly connected device will offer was discussed. JSON format was
used to build the messages between devices to save development time and communication bandwidth due to its
popularity and relatively low character count compared to XML. A testbed was designed and built to test the
functionality of the introduced method using hardware tools that are widely popular in IoT applications. Fi-
nally, the state of the user interface before and after connecting the local controller (Arduino) to the coordinator

Proc. of SPIE Vol. 10652 1065205-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

(Raspberry Pi). The Ul software module was able to update the available services according to the introduction
package received from the local controller.

Even though this approach is a move towards making the IoT self-governing it faces serious challenges along
the way. One might argue that the most important concern about this framework is security. The JSON format
is mainly meant to be an application to application communications. However, it can be easily interpreted by
human if it gets intercepted. In that case the interceptor party has a description of all the available services
that the local controller offers and might hijack the line and pretend to be the coordinator invoking a particular
service.

Another feature that might be useful is the bidirectional request ability. So far only the coordinator can
request a services from local controllers and not the other way around. There should be a similar mechanism for
the local controllers to call for information relevant to their role. In such a scenario, the privilege management,
in the sense that no device should be allowed to access data beyond its need, will be of great importance.

In addition, not all the parameters have primitive data types. Being able to accept more complex data types
can significantly increase the versatility and applicability of the framework.

5. ACKNOWLEDGEMENTS

This work is partially supported by ONR Grant ” Gulf of Mexico Spring School (GMSS) Deep Learning Work-
shop”.

Proc. of SPIE Vol. 10652 1065205-9

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

REFERENCES

[1] Tso, F. P., White, D. R., Jouet, S., Singer, J., and Pezaros, D. P., “The glasgow raspberry pi cloud: A scale
model for cloud computing infrastructures,” in [2018 IEEE 33rd International Conference on Distributed
Computing Systems Workshops], 108-112 (July 2013).

[2] Mohebali, B., Breslend, P., Graber, L., and Steurer, M., “Challenges of frequency domain measurement for
modeling the components of shipboard power systems,” Naval Engineers Journal 126(4) (2014).

[3] Abrahamsson, P., Helmer, S., Phaphoom, N.; Nicolodi, L., Preda, N., Miori, L., Angriman, M., Rikkil,
J., Wang, X., Hamily, K., and Bugoloni, S., “Affordable and energy-efficient cloud computing clusters:
The bolzano raspberry pi cloud cluster experiment,” in [2013 IEEE 5th International Conference on Cloud
Computing Technology and Science], 2, 170-175 (Dec 2013).

[4] Schot, N., “Feasibility of raspberry pi 2 based micro data centers in big data applications,” in [Proceedings
of the 25th University of Twente Student Conference on IT, Enschede, The Netherlands], 22 (2015).

[5] Dean, J. and Ghemawat, S., “Mapreduce: simplified data processing on large clusters,” Communications of
the ACM 51(1), 107-113 (2008).

[6] Tahmassebi, A., “ideeple: Deep learning in a flash,” in [Disruptive Technologies in Information Sciences],
10652, International Society for Optics and Photonics (2018).

[7] Brock, D. L., “The electronic product code (epc),” Auto-ID Center White Paper MIT-AUTOID-WH-002
(2001).

[8] Gama, K., Touseau, L., and Donsez, D., “Combining heterogeneous service technologies for building an
internet of things middleware,” Computer Communications 35(4), 405-417 (2012).

[9] Borgia, E., “The internet of things vision: Key features, applications and open issues,” Computer Commu-
nications 54, 1-31 (2014).

[10] Mohebali, B., Breslend, P., Graber, L., and Steurer, M., “Validation of a scattering parameter based model
of a power cable for shipboard grounding studies,” in [ASNE Electric Machines Symposium (EMTS)], 28-29
(2014).

[11] Mohebali, B., “Characterization of the common mode features of a 3-phase full-bridge inverter using fre-
quency domain approaches,” (2016).

[12] Kia, M., Rezayieh, K. R., and Mohebali, B., “A novel position sensor in mobile robots motion control,”
(2012).

[13] Taleb, T. and Kunz, A., “Machine type communications in 3gpp networks: potential, challenges, and
solutions,” IEEE Communications Magazine 50, 178-184 (March 2012).

[14] Bosch, “Can specification,” Robert Bosch GmbH, Postfach 50 (1991).

[15] Papazoglou, M. P., “Service-oriented computing: Concepts, characteristics and directions,” in [Web Infor-
mation Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth International Conference on],
3-12, IEEE (2003).

[16] Fielding, R. T. and Taylor, R. N., [Architectural styles and the design of network-based software architec-
tures], vol. 7, University of California, Irvine Doctoral dissertation (2000).

Proc. of SPIE Vol. 10652 1065205-10

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

