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ABSTRACT

This paper aims at implementing novel biomarkers extracted from
functional magnetic resonance imaging (fMRI) images taken at
resting-state using convolutional neural networks (CNN) to predict
relapse in heavy smoker subjects. In this regard, two classes of
subjects were studied. The first class contains 19 subjects that took
the drug N-acetylcysteine (NAC), and the second class contains 20
subjects that took a placebo. The subjects underwent a double-blind
smoking cessation treatment. The resting-state fMRI of the sub-
jects’ brains were recorded through 200 snapshots before and after
the treatment. The relapse data was assessed after 6 months past
the treatment. The data was pre-processed and an undercomplete
autoencoder along with various similarity metrics was developed
to extract salient features that could differentiate the pre and post
treatment images. Finally, the extracted feature matrix was fed into
robust classification algorithms to classify the subjects in terms
of relapse and non-relapse. The XGBoost algorithm with 0.86 pre-
cision and an AUC of 0.92 outperformed the other classification
methods in prediction of relapse in subjects.
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1 INTRODUCTION

Tobacco use remains the single largest preventable cause of death
and disease in the United States. Based on the Centers for Disease
Control (CDC)'report, in 2015, 36.5 million adults in the United
States smoked cigarettes and more than 16 million Americans live
currently with a smoking-related disease. In addition to this, every
year more than 480,000 Americans die for smoking cigarettes.

The scientific goal of this study is to develop a cessation treat-
ment using a compound that will reduce a patient’s dependence on
nicotine [3]. NAC as one of the potentially effective compounds was
used in this study. NAC is a derivative of the amino acid cysteine pro-
drug which is approved as a mucolytic agent and an acetaminophen
antidote. NAC restores the basal level of glutamate in the accum-
bens which may reduce the drug seeking behavior. This study aims
at showing that NAC affects brain functions related to addiction
[6][8]. Therefore, it would be possible to predict relapse in subjects
i.e. after 6 months of treatment. In this study, CNNs were used to
implement an autoencoder to extract features related to the high
activity areas of brain where more oxygen-rich blood is flowing
and fMRI is able to map these areas. Then, several similarity metrics
were used to compare pre-treatment (baseline) and post-treatment
reduced images. Finally, the extracted feature matrix was fed into
various machine learning algorithms for classification.

Uhttps://www.cdc.gov
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Figure 1: (a) Axial MRI slice of anatomical scan of brain of a subject with size of 240 x 240 x 220. (b) Axial MRI slices of pre-
treatment and post-treatment functional scans with size of 80 X 80 X 37 through 200 snapshots.

2 DATA

The data acquisition was done at the Spinoza Center of the Uni-
versity of Amsterdam which is equipped with a 3.0 T Intera MRI
scanner (Philips Health care, Best, The Netherlands) with a 32-
channel SENSE head coil using 39 smokers: 19 of them received the
drug NAC, and the rest received a placebo for two weeks. Anatom-
ical and functional MRI scans of the subjects’ brain at resting-state
were taken at baseline (before treatment), and after two weeks of
NAC treatment and the relapse data were assessed at six months
past the NAC treatment [8]. A threshold of 10 cigarettes was chosen
as the cut-off and according to the relapse data, 26 subjects relapsed
and 13 subjects completely stopped smoking. Two hundreds 3D
functional MRI scans of each subject’s brain of size 80 X 80 x 37, and
one 3D anatomical scan of size 240 X 240 X 220 were given in 4D
spatio-temporal NIFTI (Neuroimaging Informatics Technology Ini-
tiative) format. Figure 1 shows an axial MRI slice of (a) anatomical
and (b) functional scans of brain of a subject.

The artifacts due to the long process of the scans, possible move-
ments of the subjects, and physiological noise were pre-processed
via the standard pipeline using the Statistical Parametric Mapping
(SPM12) software to increase the blood oxygen-level dependent
(BOLD) signal to noise ratio (SNR). The pre-processing stage in-
clude: (1) motion correction, (2) segmentation, (3) realignment, (4)
temporal slice timing, (5) smoothing, (6) normalization, and (7)
co-registration [11][13][14][15][16][10].

3 METHODOLOGY

In this paper, an autoencoder consisting of multiple convolutional
layers was developed to learn the features of the fMRI images for
each subject in order to predict the relapse. An autoencoder is a
neural network which is trained to attempt to copy its input to its
output using two parts: (1) an encoder function h = f(x), and (2) a
decoder function which reproduces a reconstruction x” = g(h) of
the input [4][9]. Figure 2 presents the general schematic structure of
an autoencoder. However, not in all cases the output of the decoder

f g

Figure 2: The general schematic structure of an autoencoder,
mapping an input x to reconstruction x” via code h. The two
essential components are: (1) encoder f which maps the in-
put x to h, and (2) decoder which maps h to x’.

is the point of interest. In this study, it is desired that the trained
autoencoder would extract some salient properties from the MRI
images that could be used to predict the relapse in subjects. One
of the possible ways is to employ undercomplete autoencoders by
applying constraints on the input x to have smaller dimension. In
this way, salient features can be extracted from the full dimension
input (80 X 80 X 37) with a smaller dimension (i.e. 10X 10X 8). In fact,
learning an undercomplete representation forces the autoencoder
to capture the most salient features of the training data [4].

The developed pipeline in this paper was written in Python
employing various libraries including Keras, TensorFlow, Nipype,
Nilearn, Nibabel, and Scikit-Learn [1][2][5][7]. As shown in Table
1, the developed autoencoder contains six 2D convolutional layer
with the same padding. In fact, the encoder includes the first five
convolutional layer using a linear rectifier (ReLU) as the activation
function and a Sigmoid function used as the activation function
of the last convolutional layer (decoder). A stride size of (3 X 3), a
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Table 1: The autoencoder layer settings.

Layer Type Output Shape # of Parameters
Input Image 80 x 80 x 37 0
Conv2D 80 X 80 X 16 5,344
MaxPooling2D 40 X 40 X 16 0
Conv2D 40 X 40 X 8 1,160
MaxPooling2D 20X 20X 8 0
Conv2D 20X 20X 8 584
MaxPooling2D 10X 10X 8 0
Conv2D 10X 10x%x 38 584
UpSampling2D 20X 20X 8 0
Conv2D 20X 20X 8 584
UpSampling2D 40 x40 x 8 0
UpSampling2D 80 X 80x 8 0
Conv2D 80 X 80 X 37 2,701

Total Trainable Parameters 10,957

pool size of (2 X 2), and a sample size of (2 X 2) were used in all
convolutional, max pooling, and up sampling layers, respectively.
Binary cross-entropy was used as the loss function and the Adadelta
algorithm which is robust to sparsity was employed to optimize
the hyper-parameters [9].
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Figure 3: ROC curves for classification using XGBoost em-
ploying leave-one-out cross-validation. The lighter curves
demonstrate the ROC for each fold, the red curve illustrates
the mean value of the lighter curves, and the shaded gray
area shows the confidence interval of the classification.

The autoencoder was applied on both pre-treatment and post-
treatment scans. The compressed images after the third MaxPool-
ing2D layer with a size of (10 X 10 x 8) were fed into eight similarity
comparison metrics including (1) correlation coefficient (CC), (2)
correlation ratio (CR), (3) L1-norm based correlation ratio (CRL1),
(4) mutual information (MI), (5) normalized mutual information
(NMI), (6) Euclidean distance (ED), (7) Dice coefficient (DC), and
(8) Jaccard coefficient (JC). It was desired to extract salient features
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Figure 4: ROC curves for classification using various ma-
chine learning algorithms including DT, RF, KNN, SVM,
QDA, AdaBoost, and XGBoost employing leave-one-out
cross-validation.

via comparing each of the 200 snapshots of the pre-treatment and
post-treatment for each subject. This procedure was resulted in a
feature matrix of size 7800 X 8. Then, the feature matrix was fed into
robust classification algorithms along with Bayesian optimization
to find the tuned hyper-parameters for each classifier.

As discussed, two NIFTI image files (pre-treatment and post-
treatment) were given for each subject (total 78 image files). Each
NIFTI image which contains 200 snapshots requires ~ 100MB on
disk. However, the NIFTI format contains multiple compression
layers and reading the NIFTI file of the each subject into NumPy
array turned into ~ 1.3GB which was led into a big data challenge
(~ 100GB). The training process of the autoencoder on only one
subject using a normal equipment (Intel Core i7 2.2 GHz X 8 pro-
cessor & 8 GB 1867 MHz DDR3 memory) took around 8 hours.
Therefore, the developed pipeline was slightly changed to apply
multiple computation stages in parallel. To overcome over-fitting,
leave-one-out cross-validation was employed which also requires
better equipment. Therefore, the developed pipeline ran on a high
performance computing (HPC) machine using 5 nodes at the Re-
search Computing Center (RCC) at the Florida State University.
The wall-clock time was improved dramatically and the training
and testing process including visualization stages were done in less
than three days. It should be noted that the autoencoder model
had to be trained 15600-times (39 X 2 X 200) which cost the major
computational run-time of the project and it was almost impossible
to be done using any normal computing equipment.

4 RESULTS

In this paper, various machine learning algorithms were used for
the classification of the subjects into relapse and non-relapse classes
employing leave-one-out cross-validation to overcome over-fitting.
The salient features were extracted from fMRI scans using convo-
lutional layers developed as an autoencoder. The feature matrix
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Table 2: Classification metrics for several machine learning
algorithms employing leave-one-out cross-validation.

Classifier F1 Score Precision Recall AUC

DT 0.68 £0.02 0.68+0.02 0.67£0.03 0.55+0.04
RF 0.79+0.01 0.68+0.01 0.93+0.02 0.62+0.04
KNN 0.72+0.02 0.69+0.01 0.75+0.03 0.54+0.03
QDA 0.78£0.01 0.67+0.01 0.94+£0.02 0.55+0.05
SVM 0.80 = 0.0 0.66+0.0 100.0%+ 0.0 0.57+0.04
XGBoost 0.90 £0.01 0.86+0.01 0.95+0.02 0.92+0.02
AdaBoost 0.80 +£0.01 0.69+0.01 0.94+0.01 0.68+0.04

was used as the input of the classifiers. The results of seven clas-
sification algorithms including (1) decision tree (DT), (2) random
forest (RF), (3) quadratic discriminant analysis (QDA), (4) k-th (k=3)
nearest neighbors (kNN), (5) support vector machine (SVM) with a
radial basis function (RBF) kernel, (6) adaptive boosting (AdaBoost),
and (7) extreme gradient boosting (XGBoost) were presented in
Table 2. Figure 3 shows the receiver operating characteristic (ROC)
curves for leave-one-out cross-validation using XGBoost. As seen
in Table 2, XGBoost outperformed the other machine learning algo-
rithms and showed reasonable results. As shown in Figure 3, all the
presented ROC curves of the 39-folds are within the shaded gray
confidence interval. In addition to this, the mean ROC curves of
the employed classifiers were illustrated in Figure 4. Each curve is
also presented along with an area under curve (AUC) metric. As
the ROC curve gets closer to top left corner, the AUC value will
be higher and the model would show better accuracy. In contrast,
as the ROC curve gets closer to the dashed black line (Luck), it
indicates that the predictions are more stochastic and cannot be
generalized.

Figure 5: The mapped extracted features by the developed
autoencoder from a subject from the non-relapse class.
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Finally, the extracted features from a subject from the non-
relapse class were mapped on the subject’s brain template. The
highest intensity that is indicated in red was seen close to the
mesolimbic system which is in agreement with the previously pub-
lished results [11][12][13][14].
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