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Abstract— Controlling the dynamics of large-scale neural
circuits might play an important role in aberrant cognitive
functioning as found in Alzheimer’s disease (AD). Analyzing
the disease trajectory changes is of critical relevance when
we want to get an understanding of the neurodegenerative
disease evolution. Advanced control theory offers a multitude
of techniques and concepts that can be easily translated
into the dynamic processes governing disease evolution at the
patient level, treatment response evaluation and revealing some
central mechanisms in brain connectomic networks that drive
alterations in these diseases. Two types of controllability -
the modal and average controllability - have been applied in
brain research to provide the mechanistic explanation of how
the brain operates in different cognitive states. In this paper,
we apply the concept of target controllability to structural
(MRI) connectivity graphs for control (CN), mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) subjects.
In target controllability, only a subset of the network states
are steered towards a desired objective. We show the graph-
theoretic necessary and sufficient conditions for the structural
target controllability of the above-mentioned brain networks
and demonstrate that only local topological information is
needed for its verification. Certain areas of the brain and
corresponding to nodes in the brain network graphs can act
as drivers and move the system (brain) into specific states of
action. We select first the drivers that ensures the controllability
of these networks and since they do not represent the smallest
set, we employ the concept of structural target controllability
to determine those nodes that can steer a collection of states
being representative for the transitions between CN, MCI and
AD networks. Our results applied on structural brain networks
in dementia suggest that this novel technique can accurately
describe the different node roles in controlling trajectories of
brain networks and being relevant for disease evolution.

I. INTRODUCTION

Modern graph control theory provides a powerful insight
into dynamical phenomena that take place in brain imag-
ing connectomics in connection with the progression of
neurodegenerative diseases such as dementia. The changes
in structural or functional connectivity over time can be
captured by the trajectories of the many states of the brain
networks. The regions found on brain images can be mapped
as graph nodes and their connectivity as edges.

Both concepts of controllability and observability in mod-
ern graph theory [1], [2], [3], [4], [5], [6] are of crucial im-
portance for understanding operational and dynamical brain
networks impacting neural function, disease, development
and rehabilitation. Controllability refers to the capability of
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driving the network system along a desired trajectory while
observability refers to infer the internal states from knowing
the external outputs [7]. Finding the leader nodes in such
networks is a key requirement for influencing the trajectories
of the states towards a desired value [8], [9], [10], [11], [12].

In [13] and [14], [15], [16], [17], [18], [19] was shown that
certain brain regions or nodes in the functional or structural
connectivity graph can act as drivers and move the system
(brain) into specific states of action translating into specific
trajectories which are different for certain diseases and affect
the cognitive functions. Looking into brain networks’ graph
architectures, we discover highly connected areas and weakly
connected areas, and they both take different roles when
influencing disease trajectories. In [13] was shown that
two different types of controllability concepts apply to this
aspect. The so-called ”average controllability” quantifies the
position of a node in directing a network to easily reachable
states. Those nodes represent highly connected hubs. On
the other hand, ”modal controllability” refers to nodes in
weakly connected areas moving the brain to difficult-to-reach
states. The mathematical conditions necessary to fulfill the
conditions for these two controllability types were derived.

The driver nodes found in the course of a disease such as
AD change over time since the brain network structure and
connectivity undergoes alterations. Theoretical tools provide
us with the set of those driver nodes ensuring the structural
controllability of a brain network. In many neurodegenerative
diseases such as dementia, only a subset of states needs to
be steered towards desired values, instead of the full set
of states. This corresponds to the disease-affected regions
in the brain network. Given a subset of states, the ability
to steer this subset of states arbitrarily is known as target
controllability. We apply this novel concept on CN, MCI
and AD networks and determine the subset of regions
computationally that are involved in disease progression. The
location of the leaders are found to be in clinically relevant
areas such as temporal and frontal lobes and are already seen
in MCI.

II. METHODS

A. Controllability of Complex Networks

A network of N nodes is described as a linear time
invariant (LTI) system:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (1)

where x(t) ∈ RN is the state of the system, u(t) ∈ RM

is the input vector and y(t) ∈ RK the output vector. A is
an N ×N coupling or adjacency matrix of the system with
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aij representing the weight between node i and j, and B
is an N × M input matrix identifying the nodes that are
being directly controlled. C ∈ RK×N is the output matrix.
For directed nodes aij 6= aji while for undirected nodes the
weights’ symmetry condition holds.

In the following, we will give the definition of the state
and structural controllability [20] and a theorem defining four
controllability criteria.

Definition 1 (State Controllability)

The linear network described in equation 1 is said to be
state controllable if, for any initial state x(t0) ∈ RN and any
final state x(tf ) ∈ RN , there is a finite time t1 and an input
signal u(t) ∈ Rm, t ∈ [t0, t1], such that x(t1;x(t0), u) =
x(tf ).

There are four equivalent controllability criteria for the
system (1) and they are presented in Theorem 1.

Theorem 1 (State Controllability Theorem)

The linear network described in equation 1 is said to
be completely state controllable if and only if one of the
following conditions is fullfilled:

i) Kalman rank criterion: the controllability N × NM
controllability matrix C

Q = (B,AB,A2B, · · · , AN−1B) (2)

has full rank, that is rank(Q) = N .
ii) Popov-Belevitch-Hautus (PBH) rank criterion: rank

[sIN −AB] = N, ∀s ∈ Q.
iii) PBH eigenvector test: the relationship vTA = λvT

implies vTB 6= 0, where v is the nonzero left eigenvector of
A associated with eigenvalue λ.

iv) Gramian matrix criterion: the Gramian matrix

WQ =

∫ t1

t0

eAtBBT eA
T tdt (3)

is nonsingular.

Definition 2 (Structural Controllability)

A structural pair (A,B) is structurally con-
trollable if the controllability matrix Q(A,B) :=
(B,AB,A2B, · · · , AN−1B) has full rank, that is
rank(Q) = N .

B. Structural Target Controllability

Differently from controllability where we are concerned
with steering all states towards a desired final state, in
structural target controllability we aim to control the behavior
of only a subset of states. More specifically, we consider a
set T ⊆ [N ], the so-called target set. We then define the pair

(A,B) as target controllable with respect to T and give the
definition of structural target controllability below.

Definition 3 (Structural Target Controllability)[21]

Given a structural pair (A,B), and a target set T =
{i1, · · · , iK} ⊆ [N ]. We define a matrix CT ∈ RK×N by

[CT ]lj =

{
1 ifj = il, il ∈ T ,
0 otherwise.

The structural pair (A,B) is structurally target control-
lable with respect to T if the target controllability matrix
QT (A,B) := CT (B,AB,A2B, · · · , AN−1B) has full rank.

The necessary and sufficient graph theoretic conditions for
structural target controllability of the given structural pair
(A,B) and target set T are given below.

Theorem 2 (Structural Target Controllability Theorem)[21]

Consider a structural pair (A,B) with A being a sym-
metric matrix and a target set T ⊆ [N ]. The structural pair
(A,B) is structurally target controllable with respect to T ,
if and only if the following conditions hold simultaneously:

1.) All state vertices in XT are input-reachable;
2.) |N (S)| ≥ |S|,∀S ⊆ XT .
XT ⊆ X represents the set of vertices indexed by T . Let

D = (V, E) be a a directed graph with a vertex and edge
set V and E , respectively. Given S ⊆ V , we define the in-
neighbor set of S as N (S) = {vi ∈ V : (vi, vj) ∈ E , vj ∈
S}. A vertex vi is reachable from vertex j in D = (V, E),
if there exists a path from vertex vj to vertex vi.

C. Determining Driver Nodes Based on Graph Distances

We apply the distance-based structural controllability re-
sults from [11] to determine the leader nodes in the structural
brain networks. In the context of target control of complex
networks, the distance between drivers and target nodes,
known as the control distance, plays an important role in
the required control energy [22]. In this section, we first
utilize such distances to define a tight lower bound on the
rank of controllability matrix. The leader selection problem
can be stated as finding a minimum number of leaders that
render a given network controllable. If edge weights of the
graph G are known, one can execute exhaustive search to
compute the rank of controllability matrix for any possible
subset of leaders and select the minimal set. In addition to
computational cost, this method is not possible when edge
weights are unknown. In this case, one can convert the leader
selection problem to an optimization problem ensuring that
the dimension of the controllable subspace is not smaller
than a desired value k ∈ {1, 2, · · · , n}.

III. RESULTS

We apply the theoretical results on structural (MRI) con-
nectivity graphs for control (CN), mild cognitive impairment
(MCI) and Alzheimer’s disease (AD) subjects. For our appli-
cation, it’s only necessary to fulfill condition i) from Theo-
rem 1. These graphs were extracted from [23] and their data
were obtained from the Alzheimer’s Disease Neuroimaging
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Initiative (ADNI) database (adni.loni.usc.edu). The authors
in [23] segmented the MRI images into White Matter (WM)
and Gray Matter (GM) tissues but used only the GM images.
For the structural data, the connections in the graph show the
inter-regional covariation of gray matter volumes in different
areas. We considered only 42 out of the 116 from the
Automated Anatomical Labeling Atlas (AAL) in the frontal,
parietal, occipital and temporal lobes as shown in [23]. The
nodes in the graphs represent the regions while the links
show if a connection is existing between these regions or
not.

Using the distance-based structural controllability results
from [11], it is shown in Table I that structural net-
works would be completely controllable under any weighted
consensus-type dynamics if the leaders are selected as fol-
lows:

TABLE I
DRIVER NODES FOR STRUCTURAL NETWORKS FOR CN, MCI AND AD

GRAPHS.

Controls: 8, 10, 27, 29, 30, 33, 34, 38, 40
MCI: 7, 8, 9, 11, 30, 31, 36, 37, 39, 42
AD: 9, 11, 12, 30, 31, 34, 39, 41

In Figure 1, we visualize all driver nodes (red circles) and
see the differences in terms of driver nodes between the CN,
MCI and AD networks.

Fig. 1. Identifying the driver nodes in brain network graphs for structural
data for (A) controls, (B) MCI and (C) AD as described in [23]. The
arrows pointing at the driver nodes show the driver nodes found in all brain
networks and those found in CN and MCI or MCI and AD networks.

We select the target set T for each network in Table II such
that it shows the driver nodes found in all brain networks and
those found in CN and MCI or MCI and AD networks.

We apply Theorem 3 for determining the structural target
controllability for the chosen target set for the CN, MCI and

TABLE II
TARGET SET T FOR STRUCTURAL NETWORKS FOR CN, MCI AND AD.

Controls: 8, 30
MCI: 8, 9, 11, 30, 31, 39,
AD: 9, 11, 30, 31, 39

AD networks. We can show that all required conditions are
fulfilled and thus the structural target controllability can be
achieved for each of the three networks. The common found
nodes in the target set for MCI and AD are located in the
frontal and temporal lobe, respectively. According to clinical
findings, these nodes are a good indicator of the starting
neurodegenerative processes in MCI subjects which further
continue in AD subjects.

IV. CONCLUSIONS

In this paper, we applied the novel concept of structural
graph controllability on CN, MCI and AD brain networks
to obtain a better understanding of the trajectory of the
disease progression and the participating regions in dementia.
We first determined the leader nodes in these networks but
determined mathematically a reduced target set of nodes
that are relevant for disease evolution and especially for
the transition from MCI to AD. To address this problem,
we considered undirected and symmetric graph connectivity
matrices. We derived necessary and sufficient conditions for
structural target controllability of the brain networks. It is
worth to mention that only local topological information
was required to verify the structural target controllability.
Examples are given to elucidate the theoretical results and
are in compliance with clinical findings showing that the
target set for MCI and AD are located in the frontal and
temporal lobe, respectively.
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