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ABSTRACT

With the increasing amount of available medical data, computing power and network speed, modern medical
imaging is facing an unprecedented amount of data to analyze and interpret. Phenomena such as Big Data-omics
stemming from several diagnostic procedures and novel multi-parametric imaging modalities tend to produce al-
most unmanageable quantities of data. The paper addresses the aforementioned context by assuming that a
novel paradigm in massive data processing and automation becomes necessary in order to improve diagnostics
and facilitate personalized and precision medicine for each patient. Traditional machine learning concepts have
demonstrated many shortcomings when it comes to correctly diagnose fatal diseases. At the same time static
graph networks are unable to capture the fluctuations in brain processing and monitor disease evolution. There-
fore, artificial intelligence and deep learning are increasingly applied in oncologic medical imaging because they
excel at providing quantitative assessments of biomedical imaging characteristics. On the other hand, novel
concepts borrowed from modern control have paved the path for a dynamic graph theory that can predict neu-
rodegenerative disease evolution and replace longitudinal studies. We chose two important topics, brain data
processing and oncologic imaging to show the relevance of these concepts. We believe that these novel paradigms
will impact multiple facets of radiology but are convinced that it is unlikely that they will replace radiologists
any time in the near future since there are still many challenges in the clinical implementation.

Keywords: Dynamic graph theory, radiomics, convolutional neural network, artificial intelligence, imaging
connectomics, neurodegenrative disease, cancer

1. INTRODUCTION

The last decade in medical imaging has been shaped by the ”Big Data” era and has seen an enormous growth
in applications of large-scale graph networks in brain research, and artificial intelligence (AI) and deep learning
(DL) in radiology. This contribution aims to elucidate the existing challenges in the two above-mentioned fields
- brain research and oncologic imaging - and to unveil novel methods from graph networks and AI and DL
applicable to these emerging fields.

Brain research has seen an increase in the available relational data recorded from couplings and interactions
among the elements of the neural system. Most of the studies are descriptive and focus on pairwise interactions
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captured by static graphs with dyadic links. Pearson correlation is the basis of establishing links between the
nodes of the graph. However to capture the dynamic integration arising from considering at the same time
the structural topology of the brain networks and the dynamics of functional connectivity, novel processing
paradigms become necessary that include the changes in the topology and connections over time. An important
example are the cortical hub regions that describe the ”dynamic core network” comprising hubs changing over
time their centrality between high and low.

Figure 1. The dynamic core network showing the change of functional hubs over time. Reprinted with permission from.15

The challenges in medical imaging and computational radiology include the simultaneous evaluation of imag-
ing, molecular and liquid biopsy data from a patient, the evaluation of radiation and chemotherapy from multi-
modal imaging techniques as well as the quick diagnosis and detection from hybrid imaging. To respond to
these challenges different strategies have been applied: artificial intelligence, radiomics or a combination of both.
Radiomics means a conversion of images from different imaging techniques into mineabale data. There are sev-
eral benefits associated with quantitative radiomics: (1) establishing predictive image-based phenotypes of a
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disease for translational and precision medicine and (2) creating quantitative image-based phenotypes for data
mining with other existing omics for data discovery. A well-known example is imaging genomics. The differ-
ence between AI and radiomics is shown in Figure 2: AI works directly with images while radiomics employs
computer-extraction of ”handcrafted” features. In addition fast architectures have been developed to tackle the
high-speed data evaluation.57, 59, 60, 62, 63

Texture

Histogram
Detection Classification

Predefined engineering features

Feature engineering

Convolution layers for feature map extraction

Fully connected layers for high−level resolution and classification

Pooling Layers for feature aggregation and spatial invariance

Deep learning

Input OutputHidden layers

Increasingly higher−level features

Expert knowledge

Shape

Figure 2. Differences between conventional and deep learning in mammography for the lesion discrimination task. The
upper part of the image represents the traditional radiomics-based processing. Features such as texture, shape and
histogram are fused to describe the tumor. These features require expert knowledge and are so-called engineered features.
The lower part shows the DL-based processing and does not require any annotation. The whole image is analyzed and
through several deeper layers information from low level (edges) to high level (objects) is obtained.

2. APPROACH

2.1 Novel Dynamic Graph Networks Paradigms

New control paradigms become imperative when analyzing and interpreting vast experimental data sets and
explain synchronization phenomena in human brain networks. Graph theory represents a powerful method to
visualize49 and target in combination with modern control theory relevant nodes in the resulting graph. We
pioneered the application of modern control paradigms as a method to capture the temporal dynamic changes
in brain networks.48, 52

Mathematically, graph networks are defined as relations among a bounded set of nodes with the typical data
model being a graph G = (V,E) with vertices V and edges E representing relations between the nodes. In
addition to graph theory, the empirical nature of the field imposes statistical approaches as a complementary
tool. While static graphs give a snapshot of a single representation, dynamic graphs describe the temporal
evolution of relations among nodes as shown in Figure 3.

2.1.1 Pinning Control in Imaging Connectomics

Network controllability is becoming an important area in functional networks. The current methods applicable
to analyze these networks are nonlinear dynamical graph theory to determine driver nodes in networks or reach
a consensus.4, 5, 42, 88
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(a) (b)

Figure 3. Graph structures. (a) Graphs excel at hiding their structure. Graph clustering aims at revealing their structure.
(b) Time-dependent graph clustering. Three time steps of a dynamic graph: smooth dynamic clustering and cluster
tracking over time (gray arrows).23

The most intriguing question when analyzing a dynamic graph network is the role of each node. To reach
therapeutic efficacy we need to ”drive” a regulatory network from an existing disease-state to an optimal disease-
free state. The complexity of the networks poses many limitations to traditional analysis tools:46 (1) most graph
networks are directed, (2) the size of the network does not allow testing of several combinations to determine
driver nodes, and (3) the weights between nodes are not equal and time-dependent. Modern control theory42, 88

provides many tools to control such a network and thus successfully implement a therapeutic strategy. In the
parlance of control theory, tools are described that are able to identify the set of driver nodes and thus guide the
network’s entire dynamics.

We introduce a weighted directed graph G = (V,E,A) of order N that has a set of nodes V = {v1, · · · , vN},
a set of directed edges E ⊆ V ×V , and a weighted adjacent matrix A = (aij)N×N where aij represent the weight
of link from node i to j. The Laplacian matrix L = (Lij)N×N of the graph is defined as Lij = −aij for i 6= j,

with i, j ∈ {1, · · · , N} and Lii = kouti for i ∈ {1, · · · , N}, and kouti =
∑N

j=1,i6=j aij , represents the sum of all

afferent edges. It’s evident that
∑N

j=1 Lij = 0 for all i = 1, 2, · · · , N .

We define the consensus problem as a modality to reach an agreement between a group of autonomous agents,
in our case the nodes, when these change dynamically.

Mathematically, the consensus protocol in a multi-node system is defined as:

ẋi(t) =
∑

j 6=i

aij(xj(t)− xi(t)) = −
N∑

j=1

Lijxj(t) (1)

where xi(t) ∈ Rn is the state of the node. L = L(t) is a time-varying matrix when the graph network topology
changes over time.

Assuming that the dynamics of the node is nonlinear,83 then the state equation becomes

ẋi(t) = f(xi(t))− c
N∑

j=1

LijΓxj(t) (2)

with f() ∈ Rn representing the nonlinearity, c the coupling strength, and Γ = diag(γ1, · · · , γn) ∈ Rn×n being a
semi-positive definite diagonal matrix with γj ≥ 0. If γj 6= 0 means that the nodes can communicate through
their jth state.

A desired trajectory to be reached by the system, corresponding to a therapeutical solution, is defined as

ṡ(t) = f(s(t)) (3)
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where s(t) is an isolated equilibrium point. To achieve this equilibrium point, the new evolving equation becomes

ẏi(t) = f(xi(t)) − f(s(t))− c
N∑

j=1

LijΓyj(t) (4)

where yi = xi − si. The pinning control strategy is to guide the network to the desired state s(t). The
controllability of the system is evaluated based on the algebraic connectivity. Measures derived from the smallest
and largest eigenvalue of the connecting matrix are essential to determine the success of controllability. The
number of controlling nodes is smaller than the number of total nodes in the network and a direct control is
possible only at these nodes and then propagated to the rest of network through vertices.

The theoretical results in42, 88 have shown that: (a) nodes with low degrees should be pinned first and not
hubs, which are usually of high degree, and (b) the minimum number of nodes to be selected for control can be
theoretically determined. In large real-world networks, however, the detection of controlling regions becomes a
constrained optimization problem.82 These results are valid for both directed and undirected graphs.

2.1.2 Model Reduction of Brain Connectivity Networks

Novel mathematical concepts such as graph theoretical techniques can capture the brain connectivity and its
topology.19, 21, 89 These graph networks are mostly based on Pearson correlation and are capturing either the
structural and/or functional brain connectivity. From these graphs, new descriptors can be derived to quantify
induced changes in topology or network organization, or serve as theory-driven biomarkers to predict dementia
at the level of the individual subject.

Most graph networks applied to dementia research, even for longitudinal data, are static graph networks which
cannot capture the dynamical processes governing the time evolution of neurodegenerative diseases. Therefore,
a new paradigm in neurodegenerative diseases research - dynamical graph networks - is required to advance this
field and overcome the obstacles posed by static graph theory in terms of disease prediction, evolution, and its
associated connectivity changes.

To address this important issue of analyzing the dynamical behavior, we propose a simplified method result-
ing in a model of lower complexity. Balanced truncation is known as the standard method for model reduction.64

It is based on a state–space point of view of employing the well–known observability and controllability Grami-
ans35, 61, 73 and related to the past input energy (controllability) and future input energy (observability). While
for linear systems this procedure is pretty straightforward, for nonlinear systems balancing truncation becomes
in general not a simple task.55, 58 However they are not quite efficient in terms of model reduction for large-scale
networks. For brain connectivity models, we require a structure preservation between subsystems and at the
same time, a network topology-preserving mechanism to provide model reduction. We will address this issue
by choosing a technique based on an area aggregation and time-scale modeling for sparse brain networks with
densely interconnected hubs and externally sparse interconnections between these hubs. In12 it was shown that
the neurons in the hubs synchronize on the fast time-scale and as aggregated neurons determine the slow dy-
namics of the neural network. The idea of two-time scale systems has been widely studied in connections with
dynamical systems.48, 51, 53, 54, 56, 70

Graph networks can exhibit a structure of dense clustered areas but have sparse connections between these
areas as shown in Figure 3a. They can be dynamically approximated by a two-time scale system, where the
neurons within the same area synchronize on the fast time-scale, because the dense within-area connections drive
the nodes of the given area quickly to reach an equilibrium.

At the same time, the exchange between the areas is based on sparse connections and can be described at
a slow time-scale. This coupled dynamics leads to a reduced-order model describing the long-term behavior of
the overall network. The large-scale brain network is viewed as an interconnected graph with links between the
areas which are viewed as nodes in the graph.
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2.2 AI-Based Methods Used in Radiology

2.2.1 Data-Driven Approaches

Data-driven approaches are based on collecting medical imaging or signal data and extracting meaningful features
for the subsequent classification. Most approaches in imaging connectomics and oncologic imaging do not utilize
a-priori information for the classification task. These techniques are classified into two categories: supervised
and unsupervised.

For supervised learning, not only the input data but also the corresponding target answers are presented
to the classifier. Learning is done by the direct comparison of the actual output of the classifier with known
correct answers. This is also referred to as learning with a teacher. In contrast, if only input data without
the corresponding target answers are presented to the classifier for learning, we have unsupervised learning. In
fact, the learning goal is not defined at all in terms of specific correct examples. The available information is in
the correlations of the input data. The network is expected to create categories from these correlations and to
produce output signals corresponding to the input category. Table 1 gives an overview of data-driven techniques
used in imaging connectomics and cancer radiology.

Table 1. Brief overview of common data-driven techniques used in imaging connectomics and cancer radiology.

Technique Advantages Disadvantages References
Supervised

learning

Ensemble of Decision using branches Useful for prediction 10, 39, 80

decision trees Variable significance and Problem is overfitting 2

feature selection are included

Random forest Improved performance Increase in bias 3, 67, 80

compared to decision trees

Naive Bayesian Easy to understand Numeric attributes 16, 25

Fast follow normal distribution 31, 74

Less accurate 14, 24

Support vector Transforms non-linear Binary classifier. 27, 66

machines classification problem into Difficult computation in 6, 20, 34

linear one. High accuracy. high-dimensional data space.

Neural networks Weights need to be No strategy to 18, 45, 79

adapted for training. determine network structure. 11, 28

Multi-class classification. 29, 69

Deep learning State-of-the art Computationally intensive. 7, 68

in image-derived features. Hard to interpret. 13, 40, 91

8, 30, 90

Unsupervised

learning

Clustering Brief training duration. Number of clusters must 75, 78

(k-means) be known in advance.
Topological Interpretable data mapping. Divided clusters 11, 43, 47

data analysis Discovery of due to mapping.
variables relationships.

2.2.2 Radiomics-Based Approaches

In the past two years, a novel computational approach - radiomics - emerged to represent oncological tissues
based on quantitative descriptors.1 It has been hypothesized that a large number of radiomic features tremen-
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dously increase prognostic power. With the increasing importance of “personalized medicine”, new treatment
strategies are being sought to respond to the specific characteristics of each patient and cancer phenotype. So far
personalized medicine is centered around molecular characteristics with genomics and proteomics data analysis.

Radiomics represents a novel approach to achieve a detailed quantification of the tumor phenotypes by
analyzing a large number of image descriptors. In Hoffman et al.,26 a quantitative radiomics approach was
applied based on shape, texture and MRI tumor features and evaluated in comparison with a reduced-order
feature approach in a CAD system applied to diagnostically challenging breast lesions.

The potential of radiomics as a training-independent diagnostic decision tool was shown in Bickelhaupt et
al.9 The radiomics classifiers performed well in the differentiation of malignant and benign lesion, however
their performance was lower than that of an experienced radiologist. Prasanna et al.67 introduced a new
radiomics descriptor, the Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe). It is able to
distinguish benign and pathologic phenotypes when they appear similar to each other on anatomic imaging.
This new descriptor can capture their local entropy patterns and thus reflect hidden local differences in tissue
microarchitecture.

Another study71 analyzed the effect of varying MRI scanner parameters on breast lesions and found that
fibroglandular tissue in feature extraction radiomics studies is more susceptible to imaging parameters than
breast tumors.

2.2.3 Deep Learning and Convolutional Neural Networks

Deep learning belongs to the so-called class of representation learning in machine learning and is based on
modeling high-level abstractions in data by using many more hidden layers than the standard ”shallow” neural
networks. These layers have complex structures and employ multiple non-linear transformations. The most
important fact about DL is that they replace the ”engineered” features of traditional machine learning with hier-
archical feature extraction. The best known architecture in DL is the convolutional neural network (CNN).38, 72

Learning can be both supervised or unsupervised. Higher level features are derived from lower level features in
form of a hierarchical processing. A typical DL network architecture is shown in Figure 4.

Convolution layers for feature map extraction

Fully connected layers for high−level resolution and classification

Pooling Layers for feature aggregation and spatial invariance

Deep learning

Input OutputHidden layers

Increasingly higher−level features

Figure 4. Deep learning network. The information flow goes from the first layer to the last layer similarly to the traditional
neural networks. However, the layers have an increasing level of abstraction. The classification result is a unique shape
that can be assigned to the object to be recognized.

3. RESULTS

3.1 Dynamical Graph Theory Networks Techniques for the Analysis of Sparse
Connectivity Networks of Cortical Thickness

Structural and functional networks give us an important insight into brain development and organization. The
standard measure of pairwise correlations are Pearson product-moment correlation coefficients P = (ρij), which
quantify the linear dependency between two variables li and lj . Pearson correlation networks have been widely
applied in imaging connectomics,19, 85 bioinformatics17, 50, 53 and in addiction research.41, 77, 81, 87 A common
problem of Pearson correlation coefficients are indirect effects giving rise to a plethora of unspecifically high
correlation coefficients. Partial correlation networks attempt to estimate conditional dependencies between mea-
sured variables over all samples rather than marginal dependencies, thereby eliminating such indirect correlations.
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Translated to brain networks, interacting pairs of regions in this nertwork can be better detected by partial cor-
relations than by the standard methods. A robust algorithm for partial correlations, the so-called PC∗ proposed
in,84 is a graph pruning algorithm for identification of these correlations avoiding the direct calculation of partial
correlations from the inverse of the sample correlation matrix.

We apply dynamical graph theory on structural concentration and PC∗ connectivity graphs from84 for the
lateral views of the left and right hemispheres. For the connectivity networks, the cortical gray matter thickness
derived from 645 automatically parceled cortical volumes from T 1-images is analyzed. 25 parceled regions are
analyzed per hemisphere.

Cortical gray matter thickness is an important morphological feature when it comes to the study of brain
connectivity. Many relevant brain phenomena such as aging, schizophrenia, and Alzheimer’s consider cortical
thickness correlations.

The covariation in cortical thickness in ROIs defined on a parceled cortex is represented in such graphs either
as a simple concentration or as a PC∗. The nodes in the graphs represent the ROIs while the links show if a
connection is existing between these regions or not.

Figure 5 shows the clusters found on the functional data for the lateral view of the left and right hemispheres.
We perform a time-scale modeling and area aggregation with two main areas on the four functional networks
from Figure 5. For three graphs we can apply Theorem 1, however for the concentration graph, lateral view of
left hemisphere, we are not able to obtain an area aggregation since the conditions in Theorem 1 are not satisfied.

Figure 5. Areas of the connectivity graph for the concentration and PC∗ graphs for the left and right hemispheres
comprising 25 parcellated cortical regions from the left and right hemispheres and number of theoretically determined
driver nodes N . Figure adapted from.84

The results of the in-depth dynamical analysis are shown in Table 2. The PC∗ show smaller node and area
parameters than the concentration graphs. But most importantly, both the exact, as well as the rigid aggregate
model show the same eigenvalues for both graphs of the right hemispheres.

While the results obtained through PC∗ show a better aggregated structure than the concentration graph
in terms of node and area parameter, the dynamic graph analysis reveals no different slow modes between
concentration and PC∗. The eigenvalues in the right hemisphere are larger than those in the left hemisphere.
The contribution of the larger eigenvalues over time decreases quickly. The range of the eigenvalues for each
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Correlation Node Area Slow λ Slow λ
Parameter d Parameter δ exact system rigid aggregate system

Pearson Corr. left dave = 0 δ = 0 N/A N/A
PC left dave =

1
6

δ = 1
12

λi = {0,−4} λi = {0,−25/77}
Pearson Corr. right dave =

4
7

δ = 2
7

λi = {0,−8} λi = {0,−50/63}
PC right dave =

1
2

δ = 1
4

λi = {0,−8} λi = {0,−50/63}
Table 2. Area aggregation parameters and time-scale modeling for correlation graphs from Figure 5. The graphs are for
the left and right hemisphere.

subject represents an important biomarker for disease prediction. By providing an area and node parameter, we
are able to add additional static graph descriptors to the dynamic biomarkers.

3.2 Radiomics-Based Computer-Aided Diagnosis of Diagnostically Challenging Lesions
in Breast MRI

Diagnostically challenging lesions pose a difficulty for both for the radiological reading and for current CAD
systems. They are poorly defined in both morphology (geometric shape) and kinetics (temporal enhancement)
and pose a challenge to lesion detection and classification. Their strong phenotypic differences can be visualized
by MRI. Figure 6 shows in 3D the differences in both spatial and temporal behavior between these lesions.

(a) Benign (b) Malignant

Figure 6. Morphological and dynamic representations of segmented benign (diffusely enhancing glandular tissue) and
malignant (invasive ductal carcinoma) non-mass-like-enhancing lesions. The time-scans in the first row are without
motion compensation while those in the second row are motion-corrected.

Radiomics represents a novel approach to achieve a detailed quantification of the tumour phenotypes by
analyzing a large number of image descriptors. A computer-aided diagnosis system can determine quantitatively
the utility of the radiomics approach to diagnostically challenging lesions in breast MRI compared to the standard
reduced-order feature approach.

We extract both kinetic and morphological features to better capture the heterogeneity of the diagnostically
challenging lesions. Diagnostically challenging lesions have kinetic characteristics that are far less well character-
ized and of limited accuracy in discriminating between malignant and benign behavior.33 As a dynamical feature,
the slope of the relative signal intensity enhancement (RSIE) is used in most current CAD systems. Besides the
description of the texture we also want to characterize the enhancement of the tumor due to the contrast agent.
We are focussing on this in the following mainly by considering the mean gray-values of each tumor region and
how it develops over time. Therefore we consider trivial facts like the magnitude of the enhancement as well as
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more sophisticated methods like the Fourier transform or regression methods. The kinetic features considered
for lesion description are found in the Table (3) under (b), (c), (g), (k), (l), (m) and (n).

Morphological characteristics contain valuable information about a lesion’s type. Combined with kinetic
properties, one could expect a higher accuracy. Furthermore, non-mass enhancing lesions such as DCIS or ILC
can be better differentiated based on morphological properties.65 We mostly consider features that describe
the geometric local characteristics of the shape to identify the non-smooth surface. Therefore, we will focus on
features that are solely based on the morphology of the tumor, i.e. we will study the geometric structure without
considering the gray-values. The morphological features considered for lesion description are found in the Table
(3) under (a), (d), (e), (f), (h), (i), (j), (o) and (p).

An overview of the morphological and kinetic features and their respective dimensionality is found in Table
3.

Label Feature types Dimension

(a) Laplacian and eigenvalues of structure tensor 25
(b) Regression with function as proposed in33 7
(c) First order statistics 25
(d) Fourier transformation of relative enhancement 5
(e) Gabor features 300
(f) Krawtchouk moments86 256
(g) Regression with function as proposed in22, 44 4
(h) Geometric moments 9
(i) Morphology 9
(j) Scaling index32 25
(k) Second order statistics 60
(l) Slope of mean values 4
(m) Regression with linear function 1
(n) Fourier transformation 25
(o) Writhe number36, 37 5
(p) Averaged Zernike descriptors over time76 122

Total: 882
Table 3. Overview over all features.

We analyze quantitatively the effect of the large number of radiomic features on the detection and classification
accuracy and compare it with a reduced-order feature vector describing best morphological or the temporal
characteristics of diagnostically challenging lesions. We use either the total of 882 features or distinctive features
to extract parameters from the temporal enhancement as well as parameters from the shape. We choose as a
classifier a SVM with different kernels as described in Table 4. The area under the ROC curve (AUC) will serve
as a quantitative evaluation measure for the CAD system employed for comparisons purposes.

SVM Kernel 1 SVM Classification with a Linear Kernel.
SVM Kernel 2 SVM Classification with a Polynomial Kernel.
SVM Kernel 3 SVM Classification with Radial Basis Kernel.
SVM Kernel 4 SVM Classification with Sigmoidal Kernel.

Table 4. Classifiers employed for lesion classification.

Figure 7 shows the classification results for all 822 features describing both morphology and kinetics of the
lesions. The radiomic feature vector achieves a maximal AUC=0.55.
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Kernel 1 (AUC= 0.55). Kernel 2 (AUC= 0.51).

Kernel 3 (AUC= 0.55). Kernel 4 (AUC= 0.55).

Figure 7. ROC curves resulting from classification with SVM using all features together.

Figure 8 provides an overview of the classification results for both motion-compensated data (blue bars) as
well as uncompensated data (red bars) for parameters extracted from the temporal enhancement (kinetics) and
from the shape (morphology). The maximal AUC achieved by the reduced-order feature vector representing the
temporal enhancement is of AUC=0.77 and thus significantly higher than the radiomic vector.

The results show that the achieved lower AUC value is attributed to the redundancy that is introduced by
the fusion of all possible features in the radiomic signature. The temporal enhancement features are the key
descriptors for detection and classification in an automated system.

4. DISCUSSIONS

Graph theory and DL have received great attention in the medical imaging field. Graph networks have proven to
be crucial for understanding the architecture, development and evolution of brain networks. Emerging architec-
tural designs like multilayer networks combine multi-omic data such as large-scale brain connectivity with gene
expressions. Novel theoretical concepts introduced by the dynamic graph theory such as switching topologies can
track fast changes in graph topology and organization of functional networks. AI and DL enable the discovery
of morphological and or textural features in images solely from data. This paper presented the methodological
aspects of modern graph theory methods and of AI and DL, and their applications in brain and cancer research.
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(a) Temporal enhancement descriptors (b) Shape descriptors

Figure 8. AUCs of SVM applied to both temporal enhancement features and shape, separately, using four different kernels
and both motion compensated (blue bars) as well as original data (red bars) to compute the features.

We showed the application of pinning control and reduced model of networked agents in simplifying the dynamics
of brain networks and determining the critical ”driver nodes” that may play an important role in disease evolu-
tion. Radiomics was applied to the computer-aided diagnosis of diagnostically challenging lesions and offered a
full set of descriptive features for both morphological and temporal behavior of these lesions.

To summarize, modern dynamic graph theory and AI and DL may present many desirable advantages and
strategies to solve challenges inherent to the big data-avalanche in medical imaging, and the increased demand
stemming personalized and precision medicine. DL scales with the data, the more data are available, the more
generalized features are obtained that can dramatically improve the performance of the automated detection or
diagnosis system. The novel AI-driven architectures support associations like the human brain: the underlying
methodological paradigm involves domain-specific knowledge. This exciting big data-driven research direction
has still to overcome big challenges: (1) the plethora of novel and sophisticated graph models such as generative
models, dynamic networks and multilayer networks need to be applied not only in basic but also in clinical
and translational research, and (2) in DL the black box-like characteristics need to be abandoned such that an
intuitive interpretation and understanding of the models becomes possible. We believe that these novel tools
will help clinicians to provide better patient care.
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[83] F. Theis and A. Meyer-Bäse. Biomedical Signal Analysis: Contemporary Methods and Applications. MIT
Press, 2010.

[84] D. Wheland, A. Joshi, K. McMahon, N. Hansell, N. Martin, M. Wright, P. Thomson, D. Shattuk, and
R. Leahy. Robust identification of partial-correlation based networks with applications to cortical thickness
data. 9th IEEE International Symposium on Biomedical Imaging (ISBI), 3:1551–1554, 5 2012.

[85] K. Wylie, D. Rojas, J. Tanabe, L. Martin, and J. Tregallas. Nicotine increases brain functional network
efficiency. Neuroimage, 63:73–80, 1 2012.

[86] P. Yap, R. Paramesran, and S. Ong. Image analysis by krawtchouk moments. IEEE Transactions on Image
Processing, 12:1367–1377, 9 2003.

[87] R. Yu, L. Zhao, W. Qin, W. Wang, K. Yuan, Q. Li, and L. Lu. Regional homogeneity changes in heavy male
smokers: a resting-state functional magnetic resonance imaging study. Addiction Biology, pages j.1369–1600,
4 2011.

[88] W. Yu, G. Chen, and M. Cao. Consensus in directed newtorks of agents with nonlinear dynamics. IEEE
Transactions on Automatic Control, 56:1436–1441, 5 2011.

[89] L. Zeng, H. Shen, L. Liu, L. Wang, B. Li, P. Fang, Z. Zhou, Y. Li, and D. Hu. Identifying major depression
using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 1498:1498–1507, 4 2012.

[90] J. Zhang, A. Saha, Z. Zhu, and M. Mazurowski. Breast tumor segmentation in dce-mri using fully con-
volutional networks with an application in radiogenomics. SPIE Medical Imaging, 10575:UNSP10575oU,
2018.

[91] J. Zhu, E. Alwadawy, A. Saha, Z. Zhang, H. Harowicz, and M. Mazurowski. Breast cancer molecular subtype
classification using deep features: Preliminary results. SPIE Medical Imaging, 10575:UNSP105752X, 2018.

Proc. of SPIE Vol. 11396  1139605-17
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


