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Abstract—Resting-state function magnetic resonance imaging
(fMRI) images allow us to see the level of activity in a patient’s
brain. We consider fMRI of patients before and after they
underwent a smoking cessation treatment. Two classes of patients
have been studied here, that one took the drug N-acetylcysteine
and the ones took a placebo. Our goal was to classify the relapse
in nicotine-dependent patients as treatment or non-treatment
based on their fMRI scans. The image slices of brain are used as
the variable and as results here we deal with a big data problem
with about 240,000 inputs. To handle this problem, the data had
to be reduced and the first process in doing that was to create a
mask to apply to all images. The mask was created by averaging
the before images for all patients and selecting the top 40% of
voxels from that average. This mask was then applied to all fMRI
images for all patients. The average of the difference in the before
treatment and after fMRI images for each patient were found
and these were flattened to one dimension. Then a matrix was
made by stacking these 1D arrays on top of each other and a
data reduction algorithm was applied on it. Lastly, this matrix
was fed into some machine learning and Genetic Programming
algorithms and leave-one-out cross-validation was used to test
the accuracy. Out of all the data reduction machine learning
algorithms used, the best accuracy was obtained using Principal
Component Analysis along with Genetic Programming classifier.
This gave an accuracy of 74%, which we consider significant
enough to suggest that there is a difference in the resting-state
fMRI images of a smoker that undergoes this smoking cessation
treatment compared to a smoker that receives a placebo.

I. INTRODUCTION

Smoking cigarettes lead to illnesses such as heart disease,
strokes and cancer. Smoking is the leading cause of pre-
ventable mortality in the United States with around 50% of
lifelong smokers dying from one of the illnesses mentioned
earlier [1] [2]. What drives people to continue smoking
cigarettes is the nicotine dependency that smoking causes them
to have. This dependency drives them to compulsively have to
smoke in order to keep the withdrawal effects associated with
smoking cessation away. Developing a cessation treatment
that will reduce a patients dependency on nicotine as well as
reduce the effects of withdrawal could help millions of people
quit a dangerous habit. Previously, genetic algorithm has been

used widely for automatic segmentation of 3D MRI data [3],
fuzzy feature selection of fMRI data [4], and dynamic casual
modeling of fMRI data [5].

In this paper, as a new approach for classifications, Genetic
Programming (GP) [6] has been applied to analyze data from
a smoking cessation treatment, where subjects take a drug to
reduce their nicotine dependence while still being allowed to
smoke in order to keep off the effects of withdrawal. This
is the preferred method as more people are likely to try it if
they do not have to quit smoking immediately. The goal is to
reduce the nicotine dependency to the point that it is easier for
the subject to stop. The purpose of this paper is to prove that
there is a difference in the resting-state [7] functional magnetic
resonance imaging (fMRI) images of a smoker that undergoes
this smoking cessation treatment compared to a smoker that
receives a placebo. Functional Magnetic Resonance Imaging
(fMRI) is a set of noninvasive techniques for functional brain
mapping. By taking snapshots of the brain through time, we
will come up with movies of the brain which would help us to
find out which parts of the brain are activated after receiving
the treatments [8] [9]. Areas of high activity are defined to be
those where more oxygen-rich blood is flowing [10] [11] [12]
and the fMRI is able to map these areas. Smokers should have
similar networks in areas of the brain where addiction occurs.
Therefore, it should be noticeable if there is a change in these
areas in the brains of subjects who underwent the treatment.
We have compared some machine learning algorithms [13]
[14] with Genetic Programming to classify the subjects on
whether or not they underwent the treatment. The accuracy
of classification will rely heavily on how the data is reduced.
Techniques on how to accomplish that will be discussed.

II. SUBJECTS & FMRI DATA

The data used in this research was obtained from a study
done by the Amsterdam Center for Addiction and Research.
The study consisted of 39 subjects who were regular smokers
and had a nicotine dependence. The study sought to determine
if administering the drug N-acetylcysteine (NAC) to a subject
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(a) Anatomical (b) Functional

Fig. 1. Anatomical and Functional Image Slices of Brain of Subject.

would decrease their dependence on nicotine. In total 39
subjects partook in the experiments with 19 receiving the
drug NAC and 20 receiving a placebo. All the subjects
underwent a session of anatomical and functional scans of their
brains before and after the experiment. This MRI data was
obtained using a 3.0 T Intera MRI scanner (Philips Health care,
Best, The Netherlands) equipped with a SENSE eight-channel
receiver head coil. A gradient-echo planar image sequence
sensitive to blood oxygen level-dependent contrast took 200
3-dimensional temporal images or the subjects brains. The
subjects were asked to relax, keep their eyes closed and stay
awake during the scan. The fMRI works by combining a
strong magnetic field with radio waves in order to flip the
magnetic fields of the nuclei in oxygen-rich blood. This allows
us to create detailed maps of the flow of oxygen-rich blood
to the brain, which we relate to areas with high activity. The
measurement of blood flow, blood volume and oxygen use is
called the blood-oxygen-level-dependent (BOLD) signal and
this signal is what we study in this paper. The 3-dimensional
anatomical data obtained from this was of size 240×240×220
with a voxel size of 1mm. The 3-dimensional functional data
was of size 80 × 80 × 37 with a voxel size of 3mm. Figure
1 shows slices of the brain from one patient in all three axes
for both the anatomical (a) data and the functional(b).

III. DATA PRE-PROCESSING

We are given the fMRI data in NIFTI (Neuroimaging Infor-
matics Technology Initiative) formats which contains spatio-
temporal slices. Due to the long process of the scans, and
possible movements of our subject, the data will have artifacts.
The fMRI data was analyzed using Statistical Parametric Map-
ping (SPM) and FMRIB Software Library (FSL). By getting
the data into pre-processing phase, we are increasing the

BOLD contrast to noise. We start with motion correction, since
the movement of the subject for 1% of the voxel size would
make 1% change in the signal. This change can be greater than
the BOLD signal we are going to extract as a features. The
final voxel would not be as the same previous voxel. This is
important due to the sensitivity of the statistical analysis of the
residual noise in the image series. Then the images underwent
segmentation, and realignment. In addition to this, scanners
might acquire slices in interleaved fashion to avoid interfering
with neighboring. Thus, temporal slice timing correction is
needed. We need to correct and shift the slices back in order.
The middle of the sequence is not necessarily middle of the
brain. Regarding spatial normalization and spatial smoothing a
Gaussian Full Width Half Maximum (FWHM) kernel has been
employed. A kernel of 3 mm has been chosen for each voxel
to be replaced by the weighted average of its neighbors. High
pass or low pass filters based on the frequencies would be used
for temporal filtering. Finally, we need to map functional and
anatomical scans into a brain template to start analyzing these
slices. To remove linear trends in each session of 200 images,
the function data were band-pass filtered and de-trended. Then
we have applied a mask [15] which is a 3-dimensional array of
0s and 1s, where a 1 signifies to keep the voxel in that position,
and 0 indicates to ignore it on our data. Our mask is related to
the parts of the brain that have to do with addiction. We have
chosen to look at the limbic system which is where addiction
occurs. Observing the average 3-dimensional image obtained
earlier, we have constructed a 3-dimensional rectangular box
around where we believe the average patient’s limbic system
was. Next, we wanted to only look at voxels that had ”high
activity”. We considered this to be the voxels that had the
highest values. We decided to reduce the matrix by 40% of its
original size, so we found the highest voxel values that would
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(a) Raw Data (b) Pre-Processed Data

Fig. 2. Functional MRI Data

account for 40% of the size of the matrix. Fig. 2 demonstrates
the correlation matrix of raw (a) and pre-processed (b) data.

IV. DATA REDUCTION

We are dealing with big data problem here which means
it would be hard to come up with results with available
computational equipment and also it will be computationally
expensive. Our pre-processed matrix would be 39×9.472×109

which is a huge number for feature vector. As we have stated
before, we have 200 temporal snapshots before the treatment,
and 200 after the treatment. Here, the average of temporal
parts has been used. After this the size of the matrix would
be 39 × 236, 800. Then, a mask to extract the top 40% of
voxels has been applied. The final matrix size would be
39× 94, 720 which is still high to be used as a feature vector
for classification. Here, two methods have been employed to
reduce the data and find the feature vector to feed the classifier.

A. Independent Component Analysis (ICA)

Independent Component Analysis (ICA) [16] is a technique
to separate a multivariate signal into multiple independent
non-Gaussian signals. It should be noted that ICA has
been used to extract the hidden spatio-temporal structure in
neuroimaging. ICA has the assumption that these underlying
signals are maximally independent of each other. It uses the
fact that two random variables would be uncorrelated if they
are independent. However, we cannot come up with these
results from un-correlation to independence [17]. Typically,
ICA model tries to extract a feature vector like U from our
full rank matrix A. Let’s assume we have N patients and M
features for each, then our matrix size would be [A]N×M .
We are trying to find a good approximate with respect to our
source which we call S. Thus, for extracting q features out

of our M features, we will have:

[U ]N×q = [A]N×M [S]M×q

Now, we can feed vector U into our classifiers with different
number of features q. Here, 5, 10, and 15 independent compo-
nents have been extracted. We hope that ICA will tell us where
the regions of the brain are that share similar brain activity.
ICA is also limited by the number of subjects. Figure 3 depicts
the correlation matrix produced from getting the correlation
of the independent components with each other. We see that
the number of red (high correlation) values goes down as the
number of independent components goes up.

B. Principal Component Analysis (PCA)

PCA orthogonally transforms data consisting of correlated
of uncorrelated variables into linearly uncorrelated variables,
which are called principle components. The principal compo-
nents are ordered so that the first principal component will
have the largest variance within the data set and the last will
have the least variance. All principal components must also
be orthogonal to one another, thus giving us an orthogonal
basis set. Singular Value Decomposition (SVD) can be used to
decompose the data matrix to transform principal components:

[A]N×q = [U ]N×N [Σ]N×q[W ]Tq×q

To project the matrix with respect the principal component
we just simply need the score matrix T:

T = AW = UΣWTW = UΣ

which Σ are equal to the square roots of the eigen values of
ATA [18]. The possible number of principle components is
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Fig. 3. Correlation Matrix For Different Number of Independent Components.

Fig. 4. Correlation Matrix For Different Number of Principal Components.

equal to or less than the number of subjects. Figure 4 shows
the correlation matrix produced from getting the correlation of
the principal components with each other. Again we see that
the number of red (high correlation) values goes down as the
number of principle components goes up.

V. CLASSIFICATIONS

Multivariate analyses have been employed based on apply-
ing different classifiers on fMRI data. Based on having two
classes, some binary classifiers have been compared with each
other [19]. We have tried to compare our Genetic Programming
(GP) classifier with the other three Machine Learning (ML)
classifiers: Logistic Regression, Naive-Bayesian, and K-th
Nearest Neighbors.

A. Machine Learning Algorithms

1) Logistic Regression (LR): Logistic regression is useful
in problems that only involve two classes, such as in this
paper. The method works by finding the relationship between

the classes and the features and it does this by estimating
probabilities using a logistic function. These odds are used
for the predictive model.

2) Naive-Bayes (NB): The Naive Bayes classifier assumes
all the features to be independent and applies Bayesian Theo-
rem to them. Bayesian theorem being the conditional probabil-
ity (posterior), which is equal to the prior times the likelihood.
The prior can be calculated by making an assumption about
the features distribution called an event model. In this paper,
we test two distributions for our event model: Bernoulli and
Gaussian distributions.

3) K-Nearest Neighbors (KNN): In KNN, the K stands for
how many nearest neighbors we will consider in our algorithm.
When classifying, we will look at the K nearest neighbors of
our test set and use them to determine what class it belongs
to. Here, we have set K=3 for our predictions.
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Fig. 5. Flowchart For the GP Classifier

B. Genetic Programming (GP)

As the main method of our study, Genetic Programming
(GP) has been employed due to the selection of designs applies
on fitness measurement phase [20]. GP has been formulated
as a symbolic optimization technique originally based on
functional programming language as an evolutionary method
[21] to use computer programs for solving a problem following
the principle of Darwinian natural selection [22]. Returning
real values based on each tree and turning into class labels is
the way that GP performs classification [23]. GP instead of
using one candidate, uses a group of individuals (Population)
and genetic operators to make new individuals (Generations)
guided by a function which measures the quality of each indi-
vidual (Fitness). In other words, having a higher probability of
being selected for an individual at each generation would lead
us to have better fitness measure [24]. It is always desired to
solve a given problem in an efficient way. In this regard, the

fitness function has been calculated during evolution to have
the most efficient guided GP [25] [26].

Fitness =
Number of patients classified correctly

Number of patients used for training

In our GP model, to find the best mathematical formula, a
Crossover operator [27] has been used to select and replace
the winner of the tournament with a stochastic subtree [28]. In
addition to this, to maintain the population diversity Subtree
Mutations has been added to our GP model. It also could be
done with Point Mutation, Hoist Mutation, and Reproduction
operators in our model [29] . Figure 5 represents that the
GP model receives the Pre-Processed data as an input. It
initializes a population of individual solutions. Comparison
will be applied by measuring fitness. The next phase will be
selecting individual solution from population and modifying
fitter individual using crossover and mutation. Based on the
termination criteria, leave-one-out cross validation will be
applied and classifications accuracy would be the output.
Moreover, Table I lists the parameter setting used in GP model.

TABLE I
PARAMETERS SETTING FOR GENETIC PROGRAMMING (GP) CLASSIFIER

Parameter Setting

Population Size 500

Number of Generations 2000

Hall of Fame 300

Tournament Size 20

P Crossover 0.9

P Subtree Mutation 0.01

P Hoist Mutation 0.01

P Point Mutation 0.01

P Point Replace 0.05

Function Set add, sub,mul, div, log, neg, inv, abs

Parsimony Coefficient 0.0005

Max Samples 0.9

Random State 0

Number of Jobs 3

Through each evolution, GP model picks 300 (Hall of
Fame) best programs from population size (500). Then, these
programs will compete in a tournament and just 20 of them
will be considered for the next generations. In this regard,
the probability of crossover, subtree, point, and hoist mutation
(Reproduction phase) has been performed on a tournament
winner. Moreover, The fitness of large programs has less
probability being selected based on the Parsimony Coefficient.
In other words, parsimony coefficient might decrease the
computation times by controlling the depth or length of the
program to earn better estimation of fitness and stay away from
Bloat phenomenon. The maximum distance from its root node
to the furthest leaf node is known as depth and the number
of nodes in the program is known as length of the program
[29]. To decrease the cost of the evaluating the fitness of all
programs, three cores (number of jobs) has been parallelized in
the Python code to work on this part. It should be noted that the
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maximum number of generations and also perfect score have
been chosen as stopping criteria to terminate the evolution
early.

VI. CROSS-VALIDATION

To test for accuracy in this paper, we used Leave-One-Out
Cross-validation. This works by leaving one subject out of the
training processes in order to use it in the predictive process.
This is done 39 times in order to leave each subject out once
and the accuracy is the number of times our model predicted
correctly divided by the number of subjects, 39.

VII. RESULTS & DISCUSSIONS

A GP model with 2000 generations and 500 populations for
classifications task with two major data reduction methods,
namely ICA and PCA has been developed in Python [30]
[29]. Figure 5 depicts the flowchart of the GP classifier. Data
reduction has been done with 5, 10, and 15 independent
components (IC) and principal components (PC). For each
one, best fitness, average fitness, and average fitness for a
different number of generations have been reported. The left
Y-axis has been set to fitness, right Y-axis to length, and X-axis
to generations in logarithmic scale. Classification accuracy of
GP classifier has been compared with some machine learning
algorithms, namely Logistic Regression, Naive-Bayesian with
Gaussian and Bernoulli distribution, and 3rd nearest neighbor
for ICA and PCA. To represent the classification accuracy
better, an ROC curve has been plotted for each case as well.
As we can see in the figures 6,7, and 8, as we increased the
number of independent components, the average fitness has
been increased too. Assigning a higher fitness score to the
classifier is the way fitness function classifies more samples
using a smaller batch of features [31]. It should be noted that,
we found the best accuracy with 15 independent components
as we can see in the Table II as the GP just used 75 as
the depth length of the program. On the other hand, for 5,
and 10 IC, the GP model struggles with increasing the depth
of the model to increase the fitness factor. As we can see
the average lengths for 5 and 10 independent components
are around 90 and 100. Figures 9, 10, and 11 demonstrate
that this result matches with the results we found in the
figures 9, 10, and 11. Looking closer, classification accuracy
for the two different data reduction methods might change
significantly for a different number of components. Especially,
the classification error which differs with data distribution
for each method [21]. In addition to this, as we increased
the number of principal components, the length of the model
decreased, and the best classification accuracy has been found
with 10 principal components.

The classifications accuracy for all the classifiers we used
could be found in Tables II and III with ICA and PCA data
reduction. We should take into account that the 3rd Nearest
neighbor algorithm has produced mostly the same results for
both reductions. On the other hand, logistic regression showed
better accuracy with PCA than ICA. Since the number of
patients in each class are relatively the same (19 and 20),

Fig. 6. GP Evolution For 5 Independent Components

Fig. 7. GP Evolution For 10 Independent Components

Fig. 8. GP Evolution For 15 Independent Components

predicting of 50% does not tell us anything important. Finding
a better performance in our classification accuracy can be
enough to tell us there is a significant change in the fMRI
data based on the NAC and placebo.

TABLE II
CLASSIFICATION ACCURACY(%) FOR DIFFERENT NUMBER OF

INDEPENDENT COMPONENTS (IC)

IC LR Bernoulli NB Gaussian NB KNN GP

5 38.46% 66.66% 41.02% 61.53% 64.10%

10 35.89% 38.46% 48.71% 61.53% 64.10%

15 38.46% 48.71% 41.02% 51.28% 68.71%

Machine Learning classifiers usually employ a loss function
to update the weights for each subject which is different than
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Fig. 9. GP Evolution For 5 Principal Components

Fig. 10. GP Evolution For 10 Principal Components

Fig. 11. GP Evolution For 15 Principal Components

TABLE III
CLASSIFICATION ACCURACY(%) FOR DIFFERENT NUMBER OF PRINCIPAL

COMPONENTS (PC)

PC LR Bernoulli NB Gaussian NB KNN GP

5 61.53% 58.97% 46.15% 61.53% 58.97%

10 46.15% 51.28% 43.58% 61.53% 73.46%

15 53.84% 61.53% 43.58% 58.97% 64.10%

Genetic Programming (GP) models where the learning process
occurs during evolution. In fact, the fitness function which is
the same score for Machine Learning classifiers, supervises the
learning process through each generation. In this regard, better
accuracy is expected for GP methods. Our results confirm the
experimental results found by Wagner et. al. [20]. In addition
to this, the ability of automatically extracting discriminant
features by GP methods has shed lights on solving complex

pattern recognition problems with better accuracy. In contrast
to machine learning algorithms, GP might provide us with a
brighter point of view of the medical diagnosis [21].

Fig. 12. ROC Curve For GP Classifier With Different Independent Compo-
nents

Fig. 13. ROC Curve For GP Classifier With Different Principal Components

The ROC curves have been employed to visualize the
detection performance for both ICA and PCA in the figures
12 and 13. The ideal case would be the top left corner
(100% sensitivity) which is not very realistic. As the number
of features increases, the classifier’s performance increases
until we reach the optimal number of features. Here, we can
consider 10 principal and 15 independent components as the
optimal number of features. We should take it into account
that increasing the number of features would lead to over-
fitting due to learning of the exceptions related to training
data by a classifier. In fact, by increasing the feature space,
it will become way more sparse. It would be much easier
to find a hyperplane based on the small likelihood of the
training sample on the wrong side of the best hyperplane
which classifies the data. The area under ROC curve for each
component has been determined. That would be one of the
elements to see how good our GP model classifies the data.

VIII. CONCLUSIONS & FUTURE RESEARCH

In this paper we have compared an evolutionary approach,
Genetic Programming model with multivariate machine learn-
ing methods to conduct analyses on High Activity regions in
the Limbic system of the fMRI data. The high dimensionality
of fMRI data makes the classification task abstruse to employ
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original pre-processed data as input. In this regard, a classifi-
cation task with GP classifier has been applied for ICA and
PCA since GP has the ability to discover features for each
class without any knowledge of the statistical distribution of
the data [25]. Based on our results, an enhancement of the
classification accuracy due to the feature selection process
has been reported. Also, due to the power of GP methods
in classifications and flexible heuristic techniques [24], the
GP classification accuracy is better than the common machine
learning algorithms we used here such as, Logistic Regression,
Naive-Bayes with Gaussian and Bernoulli distributions, and K-
th Nearest Neighbors. One of the significant advantages of GP
is the fitting flexibility to the data. In this regard, also ROC
curves with an area under curves have been reported. The best
accuracy has been found for 10 principal components with
0.75 as the area under curve. We have shown that the fitness
is increasing through the number of generations which proves
how good we optimize the loss function. On the other hand,
in the other methods we used here, we are dealing with the
possibility of under or over fitting based on the low number
of subjects. In addition to this, since we have two class of
”NAC” and ”Placebo” here, we are dealing with binary classes
where GP is much more powerful than multi-class problems.
Moreover, it has been shown that our model can be trained
successfully using features detected by our High-Limbic mask
automatically from the studied fMRI data which contradicts
previous approaches considering the region of interest based
on anatomical data.

The impressive performance shown by GP compared with
Machine Learning algorithms, we presented in this paper
seems to suggest to combine deep learning algorithms such
as Convolutional Neural Networks (CNN) with GP model and
to take advantage of temporal components of the data before
and after treatment in future work.
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