
An Evolutionary Framework for Real-Time
Fraudulent Credit Detection

Behshad Mohebali
Department of Scientific Computing

Florida State University
Tallahassee, FL, USA

bmohebali@fsu.edu

Gelareh Karbaschi
Department of Computer Information

Purdue University Northwest Hammond
Hammond, IN, USA

gkarbasc@pnw.edu

Amirhessam Tahmassebi
Department of Scientific Computing

Florida State University
Tallahassee, FL, USA
atahmassebi@fsu.edu

Anke Meyer-Baese
Department of Scientific Computing

Florida State University
Tallahassee, FL, USA
ameyerbaese@fsu.edu

Amir H. Gandomi
Faculty of Engineering and Information Technology

University of Technology Sydney
Ultimo, Australia

gandomi@uts.edu.au

Abstract—Fraud has been a worldwide issue that is facing the
major economies of the world. Within an economical system,
undetected and unpunished fraudulent activities can erode the
public trust in law enforcement institutions and even incentivize
more fraud. Therefore, detection of fraudulent activities and
prosecution of responsible entities is of utmost importance for
financial regulatory bodies around the globe. Of the challenges
rising with this task is the scarcity of detection resources
(auditors) and the fraudsters constantly adapting to the new
circumstances of the market. To address these issues, this paper
proposes an evolutionary framework for credit fraud detection
with the ability to incorporate (and adapt to) the incoming data
in real-time. The goal of the framework is to identify the entities
with high a risk of fraud for efficient targeting of the scarce
resources. The data that is generated as a result of the audits
are fed into the framework for further training.

I. INTRODUCTION

As the use of credit card as a major means of payment
for customers becomes evermore prevalent, the number of
fraudulent transactions increases as well [1]. Besides the
monetary cost of fraud, the erosion of trust within a market
can result in more regulatory restrictions, higher transaction
costs, and less efficiency in the market [2]. Therefore, it is
crucial to detect fraud efficiently and quickly to maintain
the integrity of the market [3]. As technology has made
transactions easier to make, fraud detection authorities are
faced with new challenges due to the size of the activities in
need of supervision. The traditional methods of fraud detection
that involve manual detection have been rendered less and
less practical with the emergence of big data technologies [1],
[4], [5]. At the same time, the abundance of data presents
opportunities for research and development in statistical and
mathematical approaches to automate the process of fraud
detection.

The use of artificial intelligence (AI) methods in pattern
recognition has been growing rapidly in the past decade as
the data needed for training machine learning models have

become readily available [3]. This has provided researchers
and developers with efficient and standard tools to build AI
pipelines to detect fraud, especially in credit card transactions
[1]. The problem of credit card fraud detection is defined as a
binary classification problem [6], with the possible classes for
a given transaction being ”fraudulent” and ”not fraudulent.”
Given this setting, many approaches have been used to tackle
this problem such as artificial neural networks (ANN) [7], [8],
[9], genetic algorithm (GA) [10], Support Vector Machines
(SVM) [11], decision trees [12], optimization algorithms based
on migrating birds [13], logistic regression [14], [15], Bayesian
networks (BN) [6] and naive Bayes (NB) [15], [1], and
probabilistic neural networks (PNN) [16], [17], to name a few.

In [3] authors make a comparison between ten different
classification methods, including PNN, SVM, ANN, NB, BN,
etc. The performance of these classifiers were tested by
ten performance metrics including type-I and type-II error,
accuracy, F1 and F2 scores, Matthew’s correlation coefficient
(MCC), and Areu under ROC curve. In [1] the comparison is
made between NB, K-nearest neighbors, and logistic regres-
sion on highly skewed data. The performance metrics used are
accuracy, MCC, precision, sensitivity, and specificity of the
classifiers. [14] compares decision trees, ANN, and logistic
regression and shows that the latter two outperform decision
trees. On the other hand, [18] compares SVM, random forests,
and logistic regression in detecting credit card fraud. It is stated
that it cannot be a good performance metric for unbalanced
data accuracy. Therefore, sensitivity, specificity, AUC, G-
mean, and F-score were used alongside accuracy to have a
better comparison between classifiers [19], [20].

Evolutionary algorithms (EA) in computational intelligence
are methods that use natural selection to achieve ”machine
intelligence” [21], [22]. Genetic algorithm [23] applies this
principle to the problem of search while Genetic Programming
(GP) extends that to the domain of computer programs [24],
[25], [26], [27]. GP is a heuristic evolutionary method that

978-1-7281-8393-0/21/$31.00 ©2021 IEEE

Fig. 1. Flowchart of the evolutionary framework.

uses symbols in complex patterns in search of a function
representation [28], which has been used in classification
applications extensively [29]. It is noteworthy that the use
of GP for classification offers advantages such as flexibility
to the type of problems, implicit feature extraction, and good
interpretability of the discriminant function. The simplest form
of classification is binary classification [30], [31], [32]. In [33]
evolutionary algorithms were applied to the specific task of
fraud detection formulated as a classification problem.

In [34] three active learning methods were compared with
the purpose of applying GP to large datasets. The idea of active
learning is that a machine learning algorithm can achieve
higher performance with less data if it can choose the data
from which it learns [35]. Given that training on large datasets
for evolutionary algorithms is time consuming and in some
cases to the point of being prohibitive, [34] uses a query
strategy to limit the size of the training without sacrificing
performance. The process of query selection is done while the
GP process is running.

There are several aspects of the credit card fraud detection
data that is of interest: First, it is constantly being generated
as long as people use credit card as a means of payment.
Second, the methods of fraud is always evolving and fraudsters
are being more sophisticated with their methods. This paper
proposes a GP based classification framework that can take
advantage of the constant stream of data using a real-time
training approach that updates the classification model in
episodes.

The remainder of the paper is structured as follows. Section
II discusses the real-time evolutionary framework developed
to detect credit card fraud. Section III briefly explains the
internals of a Genetic Programming-based classifier. Section
IV describes the data used in this work based on [3]. Section V

presents the results from the experiment using the framework
and the data. And finally, Section VI concludes the paper while
proposing future directions for this research.

II. EVOLUTIONARY REAL-TIME FRAMEWORK

The proposed real-time evolutionary framework has four
main components:

1) Extract, transform, load (ETL) process
2) Training
3) Deployment
4) Prediction

The framework schematic is shown in Fig. 2.The process starts
with loading the real-time data and ETL process. The model is
trained and deployed for prediction of the risk for fraudulent
activities. In this part, we neglect the challenges involved in
the ETL process whether the data lives in the cloud or in
any other kind of server. Here, we assume that the data has
been loaded into the memory and we can focus more on the
modeling aspect of the framework. The dashed square in the
flowchart presents the main training phase of the framework.
As seen, the in-memory data is being splitted into train/test
splits in a stratified fashion to keep the prevalence of both
populations the same. This also helps us down the road when
we deal with imbalanced classification problems to generalize
the problem with better confidence [36].

In the training step, the feature engineering, feature stan-
dardization, feature scaling, and feature encoding can be fitted
to the train data. Then, the trained object for each step can be
used to transform the test set. Next, the probability assigned
to each operation should be tuned. This could be done in
an ad-hoc fashion to figure out the type of functions or
the rate of crossover or mutation in the MOGP classifier.
In addition to this, other hyper-parameter tuning fashions

Fig. 2. GP function classifier: (a) Search, (b) Evaluation, (c) Threshold
selection[39][40].

including exhaustive grid-search, random-search, and Bayesian
optimization can be used [37]. The model training is shown
on the right-hand side of the flowchart where the MOGP
algorithm is being implemented and the results go through the
non-dominated sorting algorithm as we discussed in Algorithm
1 and the Pareto Front of the solution is being developed. Once
the training process is done, the trained model is applied on the
test set and the common performance metrics for classification
problems such as sensitivity, specificity, precision, and recall
are calculated [38].

Last, the visualization module would be applied to the
results for both training and testing sets. Now, we have a
trained model which has been validated via the test set.
Therefore, the model can be re-fit to the whole in-memory
data. The retrained model can be deployed into the production
to be ready for any real-time data. Each real-time data would
be fed into the deployed model and the risk of fraudulent
credit would be calculated. As shown, the training phase has
a feedback loop to the deployment module. Therefore, the
real-time data will be stored in the temporary table and will
be joined back to the training phase.

The most common approach for real-time risk prediction is
batch-processing. The predicted data can be used alongside the
training data. After the model is trained on the combination
of the training data and the predicted data, the new version of
the model will be deployed. The frequency of this retraining
scheme depends on the use-case and the resources available
to the framework [36].

III. GP FUNCTION CLASSIFIER

Genetic Programming (GP) is formulated as symbolic op-
timization problem due to the selection of designs applied to
the fitness and complexity metrics phase. It was originally an
evolutionary approach based on the principles of Darwinian
natural selection [41], [29], [42], [43]. The GP classifier

Algorithm 1: NSGA-II
Input: Generations N , Population P
Output: Best Model

1 Initialize population P ;
2 Generate random population size M ;
3 Evaluate objective values;
4 Assign ranking based on Pareto sort;
5 Generate child population;
6 Binary tournament selection;
7 Recombination and mutation;
8 for i ∈ {1, . . . , N} do
9 for each Parent and Child in Population do

10 Assign ranking based on Pareto sort;
11 Generate sets of non-dominated solutions;
12 Determine Crowding distance;
13 Loop inside by adding solutions to next

generation starting from the first front until N
individuals;

14 end
15 Select points on the lower front with higher

crowding distance;
16 Create next generation;
17 Binary tournament selection;
18 Recombination and mutation;
19 end

obtains the label of a data point by calculating a real value
based on each symbol tree and comparing it to its set threshold.
GP training algorithm uses a group of individuals (called the
population) and genetic operators to create new set of indi-
viduals (generations) based on the metrics that determine the
quality of each individual, namely the fitness and complexity
functions.

TABLE I
EXTRACTED FEATURES FOR THE GP CLASSIFIER.

Feature Variable Description

Sector Score X1 Historical risk score of the sector

Parameter A X2 Discrepancy found in report A

Score A X3

Parameter B X4 Discrepancy found in report B

Score B X5

Total X6 Total discrepancy found in other reports

Numbers X7 Historical discrepancy score

Marks X8

Money Value X9 amount of money involved

Money Marks X10

Loss X11 Amount of loss suffered by the firm last year

Loss Score X12

History X13 Average historical loss in the last 10 years

History Score X14

Location ID X15 Unique ID of the location

District X16

The GP classifier as shown in Fig. 2, [39] was implemented
as a multi-objective GP system based on the non-dominant
sorting genetic algorithm II [44] (NSGA-II). The details of
NSGA-II are explained in Algorithm 1. GP binary classi-
fier training process includes finding a non-linear function
y = f(X̄) such that for two classes of H0 and H1, the
two distributions of p(f(X̄)|H0) and p(f(X̄)|H1) are best
separated, as shown in Fig. 2a. The predicted label of each
input Xi is determined by passing the output of each learning
function through the decision rule L̂i defined as:

L̂i =

{
0 if yi ≥ λ
1 if yi < λ

(1)

where 0 ≤ λ ≤ 1 is the threshold that separates two classes
H0 and H1 for input Xi based on yi = f(Xi). The highest
discriminatory power for the two classes can be obtained by
choosing the threshold that results in the largest value of area
under the Receiver Operating Characteristics (ROC) curve,
as shown in Fig. 2b. The change in λ can cause a change
in classification error, false positive rate (FPR), and false
negative rate. To obtain the best λ, an optimization problem
was defined with the weighted sum of the false positive (FP)
and false negative rates as the cost function. The threshold λ
was calculated by minimizing the cost function, as shown in
Figure 2c. The sub-tree complexity measure (CM) [45] was
considered as the second objective of the optimization process.

IV. DATA

The collected data is a one year non-confidential data set
between 2015 and 2016 from 777 firms in 46 cities by Auditor
General Office (AGO) of Comptroller and Auditor General
(CAG) of India [3]. These firms span across 14 sectors of the
Indian economy. A total of sixteen features, {X1, · · · , X16},
as shown in Table I were extracted for the classification task.
In addition to this, a set of binary labels (fraudulent or not-
fraudulent) was used for each sample. The main features of
the data were selected through close collaboration with the
auditors. The label for each instance of the data is determined
through calculating the Audit risk Score and a threshold to
separate ”Fraud” firms from ”Non-fraud” ones. This score can
be formulated as the combination of several possible risk types
into one risk measure, for example in the form of a summation.
Fig. 3 depicts the lower triangle Pearson correlation matrix
of the extracted features with a color bar (the lighter color,
the more correlation) which highlights the probability of the
correlation of each of the extracted features with each other.
As expected, the total discrepancy and parameter B (the
discrepancy in report B), and the loss score and total loss in the
first year are correlated, while other features hold correlation
coefficients of less than 0.6.

V. RESULTS & DISCUSSION

To see the performance of the proposed framework, an
MOGP model based on the NSGA-II algorithm was devel-
oped. A total of sixteen extracted features were used as the
inputs for the detection of the fraudulent credits. An ad-hoc

SE
CT

OR
_S

CO
RE

PA
RA

_A

SC
OR

E_
A

PA
RA

_B

SC
OR

E_
B

TO
TA

L

NU
M

BE
RS

M
AR

KS

M
ON

EY
_V

AL
UE

M
ON

EY
_M

AR
KS

LO
SS

LO
SS

_S
CO

RE

HI
ST

OR
Y

HI
ST

OR
Y_

SC
OR

E

SECTOR_SCORE

PARA_A

SCORE_A

PARA_B

SCORE_B

TOTAL

NUMBERS

MARKS

MONEY_VALUE

MONEY_MARKS

LOSS

LOSS_SCORE

HISTORY

HISTORY_SCORE
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Correlation matrix plot of the features.

Mutation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Cro
sso

ve
r

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Co
m

pl
ex

ity

46

88

131

173

215

257

300

342

100

150

200

250

300

Fig. 4. 3D surface plot of the MRs and the CRs versus FM.

trial (a model trained over 100 generations) for the mutation
and the CRs of the model for various rates ranging from 0.1
to 0.9 were employed. Fig. 4 illustrates the three-dimensional
surface plot of the MRs and the CRs based on the fitness
measure (FM). The fitness of the model was converged fast;
therefore, complexity was chosen here as the metric to find
the best crossover and MR for the main run. The lowest
complexity value was reported with 0.7 as the CR and 0.3
as for the MR. The resultant measures were used to develop
the final MOGP model evolved through 2000 generations and
1000 populations. The details of the parameters setting for the
GP classifier are presented in Table II.

TABLE II
PARAMETERS SETTING FOR THE GP FUNCTION CLASSIFIER.

Parameter Setting

Population Size 1000

Number of Generations 2000

Tournament Size 20

Number of Inputs 16

Crossover Rate (CR) 0.7

Mutation Rate (MR) 0.3

Number of CPU Threads 8

1st Objective AUC

2nd Objective Sub-tree Complexity

Population Initialization Ramped-Half-and-Half

Function Set +,−,×, /,√ , ()2, ()3, ()4

log, exp, sin, cos

0 500 1000 1500 2000
Number of Generations

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

Best Fitness

20

40

60

80
Co

m
pl

ex
it

y

Best Complexity

Fig. 5. GP evolution through generations. Left axis and right axis present
fitness and complexity, respectively.

The evolution of the model training can be shown as the
variation of the objectives of the model, fitness and complexity
at each generation as shown in Fig. 5. The left Y-axis was
set to FM, the right Y-axis to complexity, and X-axis to
the number of generations. It was observed that after 100
generations the model reached the highest complexity (86)
and a fitness (0.99) at the same time. However, as the number
of generations increased, the CM decreased by around half.
After 2000 generations the complexity reached a value of 43,
approximately half of the highest value of CM reached by
this model. Additionally, the FM stayed constant through the
number of generations.

The evolutionary aspect of the proposed framework opens
new avenues to define multiple objective-dependent models.
For example, by looking at the first generation of the evolution,
the least complex model can be defined with sub-tree com-
plexity of 5 and fitness score of 0.531844. As seen in Fig. 5,
after generation 86, both fitness score and sub-tree complexity
values converge to 1.0 and 59, respectively. This point is being
referred as ”knee” where the rate of score improvement for
the objectives (fitness and sub-tree complexity) does not get

TABLE III
SET OF SYMBOLIC GP SOLUTIONS IN THE PARETO FRONT.

Index GP Functions

1 X3

2 sinX2

3 X3+X5
X16

4 X3
X16

5 X3+X5+X16
X16

6 X3+X5+X10
X16(X7−X12−X14)

7 X3+X5+X10
X14+X16

8 X3+X5
X9+X16

9 X3+X5
(X9+X16)(X7−X12−X14)

10 X3+X5+X10
X11−X14+X16

better during the evolution of the model. Last, the obtained
best fitness score (1.0) with sub-tree complexity of 89 after
85 generations can be used to define the most accurate model.
As shown in previous studies [40], the performance of the
most accurate model and the knee model are usually similar
while the computational run-time of them can vary depending
on the number of generations and populations. However, in
this study, we can see that the sub-tree complexity drops at
the knee point.

As discussed, the resulted Pareto front of the developed
MOGP models based on Algorithm 1 comprises 10 models.
The symbolic representation of each model in the Pareto front
is shown in Table III. The symbolic representation would
help the fraud analysts to employ various sensitivity analysis
using synthetic data to see what features would need more
attention for the development of a better fraud detection
classifier. That could be the basis of feature importance of
the developed model. For instance, Score A (X3) is the most
frequent feature (90% total cover) across all of the models
in the Pareto front. In this case, more engineered features
with respect to the feature importance analysis would boost
the validation results. Fig. 6 and Fig. 7 illustrate the trade-off
of sensitivity-specificity and precision-recall of all developed
models resulted in the Pareto front for both training and testing
data sets. The Pareto front models are presented in dark purple
circles, the most accurate models are presented in yellow
circles, the least complex models are shown in light green
circles, and the knee models are shown in sea green circles.

Sensitivity is defined as the proportion of the cases correctly
classified as positive to the total number of positive cases. It is
also known as true positive rate, or recall. Specificity, on the
other hand, is the proportion of the cases correctly classified as
negative to the total number of the negative cases. The perfor-
mance of the classifier can be evaluated comparing these two

0.00 0.02 0.04 0.06 0.08
1-Specificity

0.75

0.80

0.85

0.90

0.95

1.00

Se
ns

it
iv

it
y

Most Accurate
Least Complex
Knee Model

(a) Training

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.75

0.80

0.85

0.90

0.95

1.00

Se
ns

it
iv

it
y

Most Accurate
Least Complex
Knee Model

(b) Testing

Fig. 6. Scatter plots of (a) training and (b) testing phases of sensitivity-specificity of all models in the Pareto front (dark purple circles) with specifying the
most accurate model (yellow circle), the least complex model (light green circle) and the knee model (sea green circle).

0.75 0.80 0.85 0.90 0.95 1.00
Recall

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

Most Accurate
Least Complex
Knee Model

(a) Training

0.7 0.8 0.9 1.0
Recall

0.6

0.7

0.8

0.9

1.0
Pr

ec
is

io
n

Most Accurate
Least Complex
Knee Model

(b) Testing

Fig. 7. Scatter plots of (a) training and (b) testing phases of precision-recall of all models in the Pareto front (dark purple circles) with specifying the most
accurate model (yellow circle), the least complex model (light green circle) and the knee model (sea green circle).

Accuracy Precision Recall F1-Score FPR FNR

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 P

er
fo

rm
an

ce

(a) Training

Accuracy Precision Recall F1-Score FPR FNR

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 P

er
fo

rm
an

ce

(b) Testing

Fig. 8. Violin plots of the classification performance metrics of all the models in the Pareto front for (a) training and (b) testing. Minimum, maximum, and
mean values are presented with horizontal black lines. Yellow line indicates the median for each metric.

metrics: how well the classifier separates the negative cases
from the positive cases. The ideal case is higher sensitivity
and high specificity. As specificity is between 0 and 1, 1-
specificity stays in the same bounds. Precision is the ratio of
the number of correct positive predictions to the number of
all the cases predicted positive (either truly or falsely).

Furthermore, Fig. 8 illustrates the distribution of the various
classification metrics including accuracy, precision, recall, F1-
score, FPR, and false negative rate (FNR) of all of the
models in the resulted Pareto front and their probability density
estimation for both training and testing data sets. A violin
plot was used indicating the minimum, maximum, mean, and
median values for each metric. As seen, models in the Pareto
front have shown reasonable results (±10%) based on the
available data in this study. It should be noted that the training
and testing data are stratified to make sure the prevalence of
fraud in both populations is the same. Therefore, the real-time
validation engine would be more realistic. However, the results
presented by Hooda et al. [3] are based on non-stratified 10-
folds cross-validation. This would be the reason that we have
a variation in FPR of the model predictions of the testing data
set while the FPR of the training data is negligible.

VI. CONCLUSIONS & FUTURE WORK

This paper proposes an evolutionary framework for real-
time fraudulent credit detection. In this regard, an MOGP
model based on NSGA-II algorithm was developed. In this
model, the area under the ROC curve and the sub-tree com-
plexity were used as the objectives. The MPGP model ran
for 2000 generations with 1000 populations. Additionally, the
mutation and CRs were optimized over 100 generations based
on the sub-tree CMs. A total of sixteen extracted features
were utilized as the inputs of the MOGP classifier. Table III
presents the resulted symbolic GP solutions in the Pareto front.
The classification metrics of the resultant models in Pareto
front as seen in Fig. 8, shown reasonable performance for
our stratified training/testing data model. After execution of
the MOGP process, the optimal model was selected from the
Pareto front results. This was done by a trade-off between the
fitness and the model complexity. Based on the results, the
following conclusions are drawn:

• During the training evolution, the model quickly reached
to a high fitness score. Therefore, the sub-tree complexity
was used as the main objective to choose the genetic
operators probability as shown in Fig. 4.

• The Pareto front includes 10 models as shown in Table
III where the least complex model is F (X) = X3 and the
most complex model is F (X) = X3+X5

(X9+X16)(X7−X12−X14)
.

• Based on the resulted models in Pareto front, discrep-
ancy score based on report A (X3), district (X16), and
discrepancy score based on report B (X5) are the top
three important features with total cover of 90%, 80%,
and 70%, respectively. These features can be analyzed in
future studies to generate more salient features to boost
the fraudulent cases and reduce the FPR.

• The FPR resultant has shown a high variance in the
testing phase while having a negligible variance in the
training phase. This could be due to the data limitation,
or the random combination of the stratified fashion of
training/testing. In the future studies, the framework
can be retrained using a bigger dataset to decrease the
variance of the FP cases in the model predictions.

• The proposed MOGP framework is shown to be a fast
enough tool that can be used to tackle big data problems
to generate solid symbolic solutions. Symbolic solutions
would give credit analysts the ability to employ various
sensitivity analysis to interpret the results based on the
employed features. That would open up new insights
to improve the fraudulent credit detection by designing
new non-linear criteria and meta-heuristic rules as new
features.

ACKNOWLEDGMENTS

The authors would like to thank Mahta Zakaria for the
careful revision of the manuscript.

REFERENCES

[1] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare, “Credit
card fraud detection using machine learning techniques: A comparative
analysis,” in 2017 International Conference on Computing Networking
and Informatics (ICCNI). IEEE, 2017, pp. 1–9.

[2] J. Perols, “Financial statement fraud detection: An analysis of statistical
and machine learning algorithms,” Auditing: A Journal of Practice &
Theory, vol. 30, no. 2, pp. 19–50, 2011.

[3] N. Hooda, S. Bawa, and P. S. Rana, “Fraudulent firm classification: a
case study of an external audit,” Applied Artificial Intelligence, vol. 32,
no. 1, pp. 48–64, 2018.

[4] B. Mohebali, A. Tahmassebi, A. H. Gandomi, and A. Meyer-Baese, “A
big data inspired preprocessing scheme for bandwidth use optimization
in smart cities applications using raspberry pi,” in Big Data: Learning,
Analytics, and Applications, vol. 10989. International Society for Optics
and Photonics, 2019, p. 1098902.

[5] A. Tahmassebi, A. Ehtemami, B. Mohebali, A. H. Gandomi, K. Pinker,
and A. Meyer-Baese, “Big data analytics in medical imaging using
deep learning,” in Big Data: Learning, Analytics, and Applications,
vol. 10989. International Society for Optics and Photonics, 2019, p.
109890E.

[6] S. Maes, K. Tuyls, B. Vanschoenwinkel, and B. Manderick, “Credit card
fraud detection using bayesian and neural networks,” in Proceedings of
the 1st international naiso congress on neuro fuzzy technologies, 2002,
pp. 261–270.

[7] K. M. Fanning and K. O. Cogger, “Neural network detection of
management fraud using published financial data,” Intelligent Systems
in Accounting, Finance & Management, vol. 7, no. 1, pp. 21–41, 1998.

[8] F. N. Ogwueleka, “Data mining application in credit card fraud detection
system,” Journal of Engineering Science and Technology, vol. 6, no. 3,
pp. 311–322, 2011.

[9] B. P. Green and J. H. Choi, “Assessing the risk of management fraud
through neural network technology,” Auditing, vol. 16, pp. 14–28, 1997.

[10] K. RamaKalyani and D. UmaDevi, “Fraud detection of credit card pay-
ment system by genetic algorithm,” International Journal of Scientific
& Engineering Research, vol. 3, no. 7, pp. 1–6, 2012.

[11] G. Singh, R. Gupta, A. Rastogi, M. D. Chandel, and A. Riyaz, “A
machine learning approach for detection of fraud based on svm,”
International Journal of Scientific Engineering and Technology, vol. 1,
no. 3, pp. 194–198, 2012.

[12] J. R. Gaikwad, A. B. Deshmane, H. V. Somavanshi, S. V. Patil,
and R. A. Badgujar, “Credit card fraud detection using decision tree
induction algorithm,” International Journal of Innovative Technology
and Exploring Engineering (IJITEE), vol. 4, no. 6, 2014.

[13] E. Duman, A. Buyukkaya, and I. Elikucuk, “A novel and successful
credit card fraud detection system implemented in a turkish bank,” in
2013 IEEE 13th International Conference on Data Mining Workshops.
IEEE, 2013, pp. 162–171.

[14] A. Shen, R. Tong, and Y. Deng, “Application of classification models on
credit card fraud detection,” in 2007 International conference on service
systems and service management. IEEE, 2007, pp. 1–4.

[15] A. Jordan et al., “On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive bayes,” Advances in neural
information processing systems, vol. 14, no. 2002, p. 841, 2002.

[16] P. Ravisankar, V. Ravi, G. R. Rao, and I. Bose, “Detection of financial
statement fraud and feature selection using data mining techniques,”
Decision support systems, vol. 50, no. 2, pp. 491–500, 2011.

[17] B. Mohebali, A. Tahmassebi, A. Meyer-Baese, and A. H. Gandomi,
“Probabilistic neural networks: a brief overview of theory, implementa-
tion, and application,” Handbook of Probabilistic Models, pp. 347–367,
2020.

[18] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision support
systems, vol. 50, no. 3, pp. 602–613, 2011.

[19] K. Jiang, T. Chen, L. Huang, G. Karbaschi, and G. R. Bernard,
“Semantic similarity of side effect and indication relations of drugs
inferred from neural embedding.” in SEPDA@ ISWC, 2019, pp. 68–77.

[20] K. Jiang, L. Huang, T. Chen, G. Karbaschi, D. Zhang, and G. R. Bernard,
“Mining potentially unreported effects from twitter posts through re-
lational similarity: A case for opioids,” in 2020 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2020,
pp. 2603–2609.

[21] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[22] A. M. Turing, “Computing machinery and intelligence,” in Parsing the
turing test. Springer, 2009, pp. 23–65.

[23] J. H. Holland et al., Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[24] J. R. Koza, “Human-competitive results produced by genetic program-
ming,” Genetic programming and evolvable machines, vol. 11, no. 3-4,
pp. 251–284, 2010.

[25] W. Banzhaf, L. Spector, and L. Sheneman, Genetic Programming Theory
and Practice XVI. Springer, 2019.

[26] A. Tahmassebi and A. H. Gandomi, “Genetic programming based on
error decomposition: A big data approach,” in Genetic programming
theory and practice XV. Springer, 2018, pp. 135–147.

[27] ——, “Building energy consumption forecast using multi-objective
genetic programming,” Measurement, vol. 118, pp. 164–171, 2018.

[28] W. Banzhaf, J. Koza, C. Ryan, L. Spector, and C. Jacob, “Genetic
programming,” IEEE Intelligent Systems and their Applications, vol. 15,
no. 3, pp. 74–84, 2000.

[29] P. G. Espejo, S. Ventura, and F. Herrera, “A survey on the application of
genetic programming to classification,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 2,
pp. 121–144, 2010.

[30] W. A. Tackett, “Genetic programming for feature discovery and image
discrimination.” in ICGA. Citeseer, 1993, pp. 303–311.

[31] D. Hope, E. Munday, and S. Smith, “Evolutionary algorithms in the
classification of mammograms,” in 2007 IEEE Symposium on Compu-
tational Intelligence in Image and Signal Processing. IEEE, 2007, pp.
258–265.

[32] G. Wilson and M. Heywood, “Introducing probabilistic adaptive map-
ping developmental genetic programming with redundant mappings,”
Genetic Programming and Evolvable Machines, vol. 8, no. 2, pp. 187–
220, 2007.

[33] A. Pouramirarsalani, M. Khalilian, and A. Nikravanshalmani, “Fraud
detection in e-banking by using the hybrid feature selection and evolu-
tionary algorithms,” IJCSNS, vol. 17, no. 8, pp. 271–279, 2017.

[34] R. Curry, P. Lichodzijewski, and M. I. Heywood, “Scaling genetic
programming to large datasets using hierarchical dynamic subset se-
lection,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 37, no. 4, pp. 1065–1073, 2007.

[35] B. Settles, “Active learning literature survey,” 2009.
[36] A. Tahmassebi, J. Martin, A. Meyer-Baese, and A. H. Gandomi, “An

interpretable deep learning framework for health monitoring systems:
A case study of eye state detection using eeg signals,” in 2020 IEEE

Symposium Series on Computational Intelligence (SSCI). IEEE, 2020,
pp. 211–218.

[37] A. Tahmassebi, “ideeple: Deep learning in a flash,” in Disruptive
Technologies in Information Sciences, vol. 10652. International Society
for Optics and Photonics, 2018.

[38] A. Tahmassebi, A. H. Gandomi, and A. Meyer-Baese, “A pareto front
based evolutionary model for airfoil self-noise prediction,” in 2018 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2018, pp. 1–8.

[39] I. Arnaldo, K. Veeramachaneni, A. Song, and U.-M. O’Reilly, “Bring
your own learner: A cloud-based, data-parallel commons for machine
learning,” IEEE Computational Intelligence Magazine, vol. 10, no. 1,
pp. 20–32, 2015.

[40] A. Tahmassebi, A. H. Gandomi, and A. Meyer-Baese, “An evolutionary
online framework for mooc performance using eeg data,” in 2018 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2018, pp. 1–8.

[41] T. Loveard and V. Ciesielski, “Representing classification problems in
genetic programming,” in Evolutionary Computation, 2001. Proceedings
of the 2001 Congress on, vol. 2. IEEE, 2001, pp. 1070–1077.

[42] A. H. Gandomi, A. H. Alavi, and C. Ryan, Handbook of genetic
programming applications. Springer, 2015.

[43] A. Tahmassebi and T. Smith, “Slickml: Slick machine learning in
python,” 2021. [Online]. Available: https://github.com/slickml/slick-ml

[44] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[45] E. Y. Vladislavleva et al., Model-based problem solving through sym-
bolic regression via pareto genetic programming. CentER, Tilburg
University, 2008.

