
A Pareto Front Based Evolutionary Model for
Airfoil Self-Noise Prediction

Amirhessam Tahmassebi†, Amir H. Gandomi∗, and Anke Meyer-Baese†
†Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306-4120, USA

Email: atahmassebi@fsu.edu , URL: www.amirhessam.com
∗School of Business, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA

Email: a.h.gandomi@stevens.edu

Abstract—According to NASA’s report on the technologies that
could reduce external aircraft noise by 10 dB, a challenge equally
as important as finding approaches on airframe noise reduction
is the demand to bring up strategies by which airframe noise can
be predicted both accurately and rapidly. One of the components
of the overall airframe noise is the self-noise of the airfoil
itself. In this paper, an evolutionary symbolic implementation
for airfoil self-noise prediction was proposed. Multi-objective
genetic programming as a subset of evolutionary computation
along with adaptive regression by mixing algorithm was used
to create an executable fused model. The developed model was
tested on the airfoil self-noise database and the performance
of the developed model was compared to the previous works
and benchmark machine learning algorithms. The reasonable
results suggest that the proposed model can be applied to noise
generation by low-Mach-number turbulent flows in aerospace,
automobile, underwater, and wind turbine acoustic communities.

I. INTRODUCTION

Recently, numerous researches have been conducted on

reducing aircraft engine noise at take off [1][2][3]. In 2004,

NASA published a report to identify the technologies that

could reduce external aircraft noise by 10 dB [4]. This requires

reducing the acoustic power by 90%. In 1977, Fink [5]

started research into airframe noise prediction and proposed

an empirically based airframe noise prediction model. One of

the component of the overall airframe noise is the self-noise

of the airfoil itself. The airfoil that passes through smooth

non-turbulent inflow conditions and interacts with boundary

layers near wake region causes the self-noise [6]. There have

been various researches conducted to predict airfoil self-noise

including light-hill acoustic analogy, linearized hydrodynamic

equations, and semi-empirical models [7]. Moreau et al. [8]

conducted an analysis of flow conditions in free-jet experi-

ments for studying airfoil self-noise. In addition to this, Geyer

et al. [1] measured the noise generation at the trailing edge

for various porous airfoils. A challenge equally as important as

finding approaches on airframe noise reduction is the demand

to bring up strategies by which airframe noise can be predicted

precisely [4].
In 1989, Brooks et al. [9] implemented a semi-empirical

model to predict self-noise of airfoil using an extensive set of

acoustic wind tunnel tests employing various chord length of

NACA0012 airfoil sections. The noise generated by turbulent

boundary layer mechanism at high Reynolds number flow

conditions. In this condition, the boundary layer over the

airfoil is turbulent, which causes noise once the turbulence

goes through the trailing edge of the airfoil and encounters the

free-stream flow. They collected a database of input variables

based on the frequency of the noise, the relative angle of

attack to wind, the free-stream velocity, and the geometric

parameters of the airfoil including the displacement thickness

and chord length. They have used a scaling rule to scale the

sound pressure level as the output of the experiment [9][10].

Fig. 1 depicts the airfoil nomenclature diagram in details.

In this paper an evolutionary symbolic implementation for

airfoil self-noise prediction was proposed. In this implemen-

tation various models with different goals using the combi-

nation of multi-objective genetic programming and adaptive

regression by mixing algorithm were proposed. The proposed

models were compared to the benchmark machine learning

algorithms along with the model proposed by Brooks et al.

[9] in 1989 which is still utilized for noise prediction in

wind turbine designs. The proposed model can be applied

to noise generation by low-Mach-number turbulent flows in

aerospace, automobile, underwater, and wind turbine acoustic

communities [8].

Fig. 1. Airfoil nomenclature diagram.1

II. GENETIC PROGRAMMING

Genetic Programming (GP) [11] as a symbolic optimization

technique searches the space of mathematical expressions

to find the model that best fits a given dataset, both in

terms of accuracy and simplicity. GP due to the selection

of designs applies on fitness and complexity measurements

1https://en.wikipedia.org/wiki/Airfoil

978-1-5090-6017-7/18/$31.00 ©2018 IEEE



Algorithm 1: NSGA-II

Input: Generations N , Population P
Output: Best Model

1 Initialize population P ;

2 Generate random population size M ;

3 Evaluate objective values;

4 Assign ranking based on Pareto sort;

5 Generate child population;

6 Binary tournament selection;

7 Recombination and mutation;

8 for i ∈ {1, . . . , N} do
9 for each Parent and Child in Population do

10 Assign ranking based on Pareto sort;

11 Generate sets of non-dominated solutions;

12 Determine Crowding distance;

13 Loop inside by adding solutions to next

generation starting from the first front until N
individuals;

14 end
15 Select points on the lower front with higher crowding

distance;

16 Create next generation;

17 Binary tournament selection;

18 Recombination and mutation;

19 end

phase was formulated originally based on functional program-

ming language as an evolutionary method to use computer

programs for solving a problem following the principle of

Darwinian natural selection. GP instead of using one can-

didate, uses a group of individuals (population), which are

formed by stochastically combining mathematical building

blocks such as mathematical operators, analytic functions,

constants, and state variables and genetic operators to make

new individuals (generations) guided by objective functions

such as fitness and complexity which measure the quality of

each individual. GP function regressor [12][13] as shown in

Algorithm 1 was implemented as a Multi-Objective Genetic

Programming (MOGP) approach based on Non-Dominated

Sorting Genetic Algorithm II (NSGA-II) introduced by Deb

at al. [14]. The algorithm minimizes both the error (mean-

absolute-error (MAE) or mean-square-error (MSE)) of the

models and the subtree complexity measure [15] as the non-

linearity order of the model simultaneously [12][13][16]. GP

has shown great performance in predicting complex patterns

using its evolutionary nature [17][18][19][20] and flexibility

to be combined with parallel algorithms to run multiple jobs

using high performance computing (HPC) [21].

The proposed model forms a Pareto front of models based

on the fitness and subtree complexity measures. In this study,

the least complex model, the most accurate model, and the

model at the knee of the Pareto front were presented. Ad-

ditionally, a fused model of the Pareto front obtained with

Adaptive Regression by Mixing (ARM) algorithm introduced

Algorithm 2: ARM

Input: Input Variables Xi, Target Variables Yi, i ∈ (1,N),

Function f̂
Output: Best Model

1 Random permutation the order of the observations M ;

2 for m ∈ {1, . . . ,M − 1} do
3 Randomly permute the order of the observations.;

4 Split the data into two parts ;

5 Z(1) = (Xi, Yi)
N
2
i=1 ;

6 Z(2) = (Xi, Yi)
N
i=N

2 +1
;

7 for j ∈ {1, . . . , J} do
8 Estimate f̂j,N2

(x;Z(1)) of f ;

9 Estimate the variance function σ2(x) by σ̂2
j,N2

(x);

10 for i ∈ {N2 + 1, . . . , N} do
11 Predict Yi by f̂j,N2

(Xi) ;

12 end

13 Ej =

∏N

i=N
2

+1
h((Yi−f̂

j, N
2
(Xi))/σ̂j, N

2
(Xi))

∏N

i=N
2

+1
σ̂
j, N

2
(Xi)

;

14 Compute the current weight Ŵj =
Ej∑J
l=1 El

;

15 end
16 The final estimate is f̂N (x) =

∑J
j=1 Ŵj f̂j,N (x) ;

17 end

by Yang [22] was presented. Algorithm 2 illustrates the details

of the ARM implementation.

Fig. 2. Scatter matrix representation of the input/output variables in the airfoil
self-noise database with kernel density function estimations of the input/output
variables on the diagonal.
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(a) Fitness (b) Complexity

Fig. 3. Exploring the optimized values for mutation and crossover rates for the developed GP model based on the fitness and complexity measures.

III. AIRFOIL SELF-NOISE DATABASE

Brooks et al. [9] collected a noise spectrum database from

a family of NACA0012 airfoils based on turbulent boundary

layer noise mechanism. The data base consists of 5 input

variables including: (1) frequency (F ) in Hertz (Hz), (2) angle

of attack (α) in degree (◦), (3) chord length (C) in meters (m),
(4) free-stream velocity (VFS) in meters per second (m/s),
and (5) suction side displacement thickness (D) in meters (m).
The scaled sound pressure level (SPL) in decibel (dB) was

used as the output variable, which is implemented as follows:

Scaled SPL1/3 = SPL1/3 − 10 log(
M5DL

r2e
) (1)

where M is the Mach number, L is the airfoil span, D is

the suction side displacement thickness, and re is the retarded

observer position. Fig. 2 depicts the scatter matrix presentation

of the input/output variables with kernel density function

estimations. The database contains 1503 exemplars, which was

divided into training and testing sets based on the chord length

values. The training set contains 5 different values for chord

length including [0.0254, 0.0508, 0.1524, 0.2286, 0.3048] in

meters. The exemplars with the chord length of 0.1016 (m)
were used as the testing set. Thus, the training set and the

testing set comprise 1240 and 263 exemplars, respectively

[6][9][23].

IV. RESULTS & DISCUSSION

A GP model based on multi-objective genetic programming

approach and NSGA-II was developed. Total five features in

the database were used as the inputs of the GP model for the

symbolic regression task. To optimize the mutation and the

TABLE I
PARAMETERS SETTING FOR THE GP FUNCTION REGRESSOR.

Parameter Setting

Population Size 1000

Number of Generations 5000

Tournament Size 20

Number of Inputs 5

Crossover Rate 0.7

Mutation Rate 0.3

Number of Exemplars in Training Set 1240

Number of Exemplars in Testing Set 263

Number of CPU Threads 8

1st Objective MSE

2nd Objective Subtree Complexity

Population Initialization Ramped-Half-and-Half

Function Set +,−,×, /,√ , ( )2, ( )3, ( )4

log, exp, sin, cos

crossover rates of the model, various rates ranging from 0.1
to 0.9 were employed for the developed GP model for 200
generations. Fig. 3 illustrates the 3-dimensional surface plot

of the mutation rates and the crossover rates based on the

fitness and subtree complexity measures. The highest fitness

value was obtained with a value of 0.7 as the crossover

rate, and a value of 0.3 as the mutation rate. Additionally,

the lowest complexity was obtained with a value of 0.3 as

the crossover rate, and a value of 0.7 as the mutation rate.

However, the complexity that was obtained with values of 0.3
and 0.7 as the mutation rate and the crossover rate, respectively

were considered as the second lowest. Therefore, these values
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were considered to run the developed GP model with 5000
generations and 1000 population for the regression task. The

details of the parameters setting for GP function regressor is

presented in Table I. The developed GP model was trained

on the training dataset with 1240 exemplars and tested on the

testing dataset with 263 exemplars. This would decrease the

chance of over-fitting of the model.

At each generation, the fitness and the complexity values

were reported for the best individuals. Fig. 4 depicts the

evolution of the GP model through generations for both

fitness and complexity measures. The left Y-axis was set to

fitness measure, the right Y-axis to complexity, and X-axis

to number of generations. As seen, after roughly about 100
generations the model reached the fitness with 80% accuracy.

After 5000 generations the fitness reached a value of 88%
with the complexity value of 7560 which is about eight times

more than the value that was obtained for the 80% fitness

measure. By increasing the number of generations both fitness

and complexity values increased as well.

Fig. 4. The evolution of the employed objective functions, fitness and
complexity measures for the developed GP model through different numbers
of generations.

By considering the combinations of the fitness and com-

plexity measures three different models were defined. The first

model, which is the least complex model was obtained at the

first generation with the subtree complexity of 5 and fitness

value of 0.4963. The second model, which is the most accurate

model was obtained after 4850 generations with a fitness value

of 0.878 and complexity measure of 6911. The third model

is the knee model, which was the point at the model that the

slope of the fitness and complexity measures did not change

through evolution of the generations. The knee model was

found after 92 generations with a fitness value of 0.8124
and subtree complexity value of 197. Thus, the knee model

can be a great alternative to be used in the regression task

with 98% less computational run-time. In addition to this, a

fused model based on ARM algorithm as shown in Algorithm

2 was presented as well. The proposed fused model based

on the ARM algorithm has the ability of adapt itself over

Fig. 5. Scatter plots of coefficient of determination versus root-mean-square
error (R vs RMSE) of the all models in the Pareto front (dark violet circles)
with indicating the most accurate model (orange star), the least complex model
(yellow pentagon), the fused model (purple triangle), and the knee model
(maroon square).

different procedures to perform well under various conditions.

In other words, the goal of employing the ARM algorithm

was to produce a model by giving different weights to some

of the models in the Pareto front via proper assessment of

performance of the estimators [22].

In the context of statistical modeling with the main purpose

of prediction of future outcomes, coefficient of determination

(R2) provides a measure of how well observed outcomes are

replicated by the model, based on the proportion of total vari-

ation of outcomes explained by the model. Additionally, root-

mean-square error (RMSE) is frequently used to measure

the differences between values predicted by a model and the

values actually observed [24]. To explore the performance of

the proposed models, both regression metrics were computed

for all of the models in the Pareto front (shown in dark

violet circles) as shown in Fig. 5. Additionally, the specified

models including the least complex model (shown in yellow

pentagon), the most accurate model (shown in orange star), the

knee model (shown in maroon square), and the fused model

(shown in purple triangle) were indicated. It is clearly shown

that the ARM algorithm found a model even better than the

most accurate model in the Pareto front. The fused model with

a value of 0.9452 as R, a value of 7.44 as MSE, and a value

of 2.09 as MAE outperformed the other proposed models

in the Pareto front including the most accurate model with a

value of 0.9194 for R, a value of 9.18 for MSE, and a value

of 2.28 for MAE metrics. It should be noted that the knee

model has also shown reasonable performance with a value

of 0.8819 for R, a value of 13.18 for MSE, and a value of

2.72 for MAE. However, these number were obtained only

after less than 200 generations. In fact, to save the compu-
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(a) α = 0◦ (b) α = 3.3◦

(c) α = 6.7◦ (d) α = 8.9◦

(e) α = 12.3◦ (f) α = 15.6◦

Fig. 6. An exhaustive comparison of the predicted scaled SPL at different frequencies for the most accurate model, the least complex model, the fused model,
and the knee model versus the experimental data at different angles of attack and fixed chord length at 10.16 cm.
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(a) Knee Model (b) Most Accurate Model (c) Fused Model

Fig. 7. Histograms of the ratio of the predicted and the measured SPL for (a) the most accurate model, (b) the knee model, and (c) the fused model. Mean
value and coefficient of variation of this ratio are also reported for each model.

(a) Knee Model (b) Most Accurate Model (c) Fused Model

Fig. 8. Measured versus predicted SPL values using (a) the most accurate model, (b) the knee model, and (c) the fused model. The black dashed line
indicates the ideal fit.

tational run-time, the knee model would be a great choice

as an alternative to the most accurate model. Additionally,

the performance of the selected models from the Pareto front

were compared with the experimental data as shown in Fig.

6. In this regard, an exhaustive comparison of the predicted

scaled SPL at different frequencies for different angles of

attack including α = [0◦, 3.3◦, 6.7◦, 8.9◦, 12.3◦, 15.6◦] and a

fixed chord length at C = 10.16 cm was done. It is clearly

shown that all the spikes occurred for the frequencies less

than 2000 Hz. That would be considered as the challenging

part of the regression since the developed models could not

predict the spikes of the experimental data for the small angles

of attack except for the α = 15.6◦ as shown in Fig. 6f

using the fused model. The illustrations of the predicted values

versus the experimental values put lights on the facts that the

models should be revised to capture the spikes. Even the most

accurate model had still linear nature and could not predict

very promising the extrema point in the data where the slope

changed. However, employing the ARM algorithm and giving

weights to some of the models in the Pareto front as the

fused model showed better performance as shown in Fig. 6f.

The results of the proposed models outperformed the results

presented by Brooks et al. [9] and Lau et al. [6]. The model

presented by Brooks et al. under-fitted the SPL values at both

low and high frequencies. Fig. 7 presents the histograms of

the ratio of the predicted and the measured SPL for different

different models. In order to study the quality assurance, mean

(μ) and coefficient of variation (CV ) of this ratio are also

reported. As shown, the mean values of all the histograms are

approximately equal to one. The histogram of the fused model

presents the best mean value of 0.9933. Employing coefficient

of variation of a model helps to have better understanding of

standard deviation of data in the context of the mean value

of the data. Additionally, Fig. 8 demonstrates the measured

versus predicted SPL values using the developed models. As

an alternative to the developed GP model based on NSGA II,

Multi-Stage Genetic Programing (MSGP) can be employed to

reduce the error decomposition [25][26]. The MSGP algorithm

consists of two main stages: (1) incorporating the individual

effect of the input variables, (2) incorporating the interactions

among the input variables. The MSGP formulates these two

terms in an efficient procedure to optimize the error among

predicted and actual values. This procedure can be done with

employing parallel processing algorithms to run multiple jobs

at the same time with high performance computing.

As the final assessment, the performance of the most

common machine learning regression models including: (1)

Gradient Boosting (GB), (2) Random Forest (RF), (3) Decision

Tree (DT), (4) Support Vector Regression (SVR), and (5) Least

Absolute Shrinkage and Selection Operator (LASSO) were

compared to the developed GP model [24]. All the models

were implemented in Python [27] and were trained on the
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Fig. 9. REC curves of various regression methods along with calculated AUC
compared to the developed symbolic regression model using GP.

training set, and were validated on the testing set. In machine

learning, a Receiver Operating Characteristic (ROC) curve

visualizes the performance of a classifier applied on a binary

class problem across all possible trade-offs between the false

positive rates and the true positive rates [24]. A graph consists

of multiple ROC curves of different models characterizes the

performance of the models on a binary problem and makes

the comparison process of the models easier by visualization.

Additionally, the area under the ROC curve (AUC) represents

the expected performance of the classification model as a

single scalar value [28].

Although ROC curves are limited to classification problems,

Regression Error Characteristic (REC) curves can be used

to visualize the performance of the regressor models. REC

illustrates the absolute deviation tolerance versus the fraction

of the exemplars predicted correctly within the tolerance inter-

val. The resulting curve estimates the cumulative distribution

function of the error. The area over the REC curve (AOC),

which can be calculated via the area under the REC curve

(AOC = 1 - AUC) is a biased estimate of the expected

error. Furthermore, the coefficient of determination R2 can

be also calculated with respect to the AOC [28]. Likewise the

ROC curve, the shape of the REC curve can also be used

as a guidance for the users to reveal additional information

about the data modeling. The REC curve was implemented

in Python2 and the details of the error metrics and scaling of

the residuals are also available [29]. Fig. 9 demonstrates the

REC curves of the implemented machine learning algorithms

in comparison to the GP model. As shown, all of the models

predicted all the exemplars with a normalized deviation of 0.08
correctly. By decreasing the deviation tolerance, the fraction

of the correct predictions decreased as well. A value of 0.05
can be the critical tolerance for the employed models. The

developed GP model with an AUC of 86.33% outperformed

the other models. In fact, the developed GP model has the

ability of prediction of the exemplars with a deviation of less

2https://github.com/amirhessam88/Regression-Error-Characteristic-Curve

than 0.03 precisely. In addition to this, Fig. 10 illustrates

the radar plot of the performance of the regression models

and the model proposed by Brooks et al. [9] in terms of

coefficient of determination R. By comparing the coefficient

of determination, it is clear that the GP model with an R value

of 0.9452 outperformed the other models. The closest R score

to the proposed model is GB with an R score of 0.8446. It

should be noted that the model proposed by Brooks et al. with

an R score of 0.8087 is still utilized for noise prediction in

wind turbine engines. However, the proposed model showed

a reasonable potential as an alternative to the proposed model

by Brooks et al.

Fig. 10. Radar plot representation of the coefficient of determination for
various regression methods compared to the developed symbolic regression
model using GP.

V. CONCLUSIONS

This paper aims at developing an evolutionary symbolic

implementation for airfoil self-noise prediction. In this regard,

a multi-objective genetic programming strategy based on non-

dominated sorting genetic algorithm II with considering the

optimization of mean-square error as the fitness measure and

the subtree complexity as the complexity measure simultane-

ously was employed. The GP model ran for 5000 generations

with 1000 population considering training/testing sets to over-

come any possible over-fitting. Additionally, the mutation and

crossover rates were optimized over 200 generations based on

the fitness and complexity measures. A total of five features

from NACA0012 noise database were employed as the inputs

of the GP function regressor. Table II presents the summary

statistics including correlation coefficient (R),relative root-

mean-square error (RRMSE), relative mean absolute error

(RMAE), and performance index (PI) of the results of the

GP function regressors including the most accurate model, the
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least complex model, the knee model, and the fused model.

Higher R values and lower RRMSE values result in lower

PI , and consequently, indicate a more precise model. It should

be noted that PI values range from 0 to +∞ and the proposed

performance index in Table II indicates the model predicts the

actual values very well.

TABLE II
REGRESSION SCORE METRICS OF THE SELECTED MODELS IN THE PARETO

FRONT.

Model R RRMSE RMAE PI

Knee 0.8819 2.89% 2.16% 0.015

Fused 0.9452 2.17% 1.66% 0.011

Most Accurate 0.9194 2.41% 1.82% 0.012

Least Complex 0.0758 6.10% 5.17% 0.056

The developed GP model was compared with the other

machine learning algorithms. It was clearly shown that the

GP model outperformed the other machine learning algorithms

applied on this database. Moreover, the developed model

was compared with the model proposed by Brooks et al.

in 1989 which is still utilized for noise prediction in wind

turbine designs. The reasonable performance of the developed

model suggests that the proposed evolutionary approach can

be applied to similar works including noise generation by

low-Mach-number turbulent flows in aerospace, automobile,

underwater, and wind turbine acoustic communities.

ACKNOWLEDGMENTS

The authors would like to thank Eitan Lees for the careful

revision of the manuscript.

REFERENCES

[1] T. Geyer, E. Sarradj, and C. Fritzsche, “Measurement of the noise
generation at the trailing edge of porous airfoils,” Experiments in Fluids,
vol. 48, no. 2, pp. 291–308, 2010.

[2] C. R. Ilario da Silva, T. H. Orra, and J. J. Alonso, “Multi-objective
aircraft design optimization for low external noise and fuel burn,” in 58th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, 2017, p. 1755.

[3] L. Bertsch, B. Schäffer, and S. Guerin, “Towards an uncertainty analysis
for parametric aircraft system noise prediction,” 2017.

[4] D. P. Lockhard and G. M. Lilley, “The airframe noise reduction
challenge,” 2004.

[5] M. R. Fink, “Airframe noise prediction method,” United Technologies
Research Center East Hartford CT, Tech. Rep., 1977.
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gp-based approach for fmri big data classification,” in Proceedings
of the Practice and Experience in Advanced Research Computing
2017 on Sustainability, Success and Impact, ser. PEARC17. New
York, NY, USA: ACM, 2017, pp. 57:1–57:4. [Online]. Available:
http://doi.acm.org/10.1145/3093338.3104145

[22] Y. Yang, “Adaptive regression by mixing,” Journal of the American
Statistical Association, vol. 96, no. 454, pp. 574–588, 2001.

[23] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[24] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. Wiley,
New York, 1973.

[25] A. H. Gandomi and A. H. Alavi, “Multi-stage genetic programming: a
new strategy to nonlinear system modeling,” Information Sciences, vol.
181, no. 23, pp. 5227–5239, 2011.

[26] A. Tahmassebi and A. H. Gandomi, “Genetic programming based on
error decomposition: A big data approach,” in Genetic Programming
Theory and Practice XV. Springer, 2018.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning
Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[28] J. Bi and K. P. Bennett, “Regression error characteristic curves,” in
Proceedings of the 20th International Conference on Machine Learning
(ICML-03), 2003, pp. 43–50.

[29] A. Tahmassebi, “ideeple: Deep learning in a flash,” in Disruptive
Technologies in Information Sciences, vol. 10652. International Society
for Optics and Photonics, 2018.

2018 IEEE Congress on Evolutionary Computation (CEC)


		2018-09-27T07:41:51-0400
	Preflight Ticket Signature




