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ABSTRACT

The advancement of Internet of Things (IoT) technologies, such as low-cost embedded single board computers
which integrate sensors, communication hardware, and processing power in one unit, has given more traction to
the concept of Smart Cities. Having cheaper processing power at their disposal, the sensing units are capable
of gathering increasingly larger amounts of raw data locally, which must be processed before being usable. One
concern for this scheme is the amount of infrastructure and network bandwidth needed to transfer the data from
the acquisition location to a server, which may be miles away, for further processing. The bandwidth available
to the sensor network, distributed through the city, is expanding in a lower rate than the size and bandwidth
demand of the network it serves. Therefore, transferring the unprocessed data to a central server does not seem
feasible unless major compromises are made in terms of data resolution and size. This paper proposes a local big
data based preprocessing scheme before the data is transferred to the storage. Using this scheme can free up the
network bandwidth, exploit the otherwise wasted local processing power, and release processing load from the
central server, allowing it to serve a larger network without the need for more powerful hardware. By making
efficient use of network infrastructure the smart city applications are more affordable and scalable.
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1. INTRODUCTION

The emergence of Internet of Things technologies in numerous areas of urban infrastructure such as transporta-
tion,1 energy management,2,3 agriculture, supply chain, etc., has brought forth opportunities for better situation
awareness and more effective decision making on the urban management level based on data.4 In transportation,
the IoT infrastructure can make the cities safer and the traffic flow more fluent using technologies such as RFID
plates.5

Advancement in several fronts such as:

• Processors: The development of low cost, low power, and small processors and system-on-a-chip integrated
circuits enables the designers to include processing power in their designs.

• Communication: In terms of hardware, the communication modules are taking the same path as the
processors, becoming more capable and more affordable. This means that low cost embedded communica-
tion systems can be designed around a widely used standard such as Internet Protocol (IP) to integrate as
many devices as possible in the same platform.

• Software: Having more powerful processors means the smart devices can run more sophisticated operating
systems. This will invite in the community of software engineers and developers who are used to develop
programs in higher level languages such as Python and Java.
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expands the opportunities in IoT design and development. However, taking full advantage of the power of data
requires new approaches to store, transfer, and process data in massive volumes.6 As the number of smart devices
rises, the demand for faster and more efficient communication platforms will become more relevant. The use of
the available bandwidth of communication platforms needs to be optimized to ensure that there is no impeding
bottlenecks in the design.

Although there is no universally agreed upon definition of the smart cities, the available definitions share the
use of information technology resources, such as hardware, software, sensors, and data, to improve the quality of
life for residents of an urban area7 as the fundamental piece. In some sources, the people themselves are counted
as a major part of the smart city echosystem.8

The idea of exploiting processing power that is geographically distributed into several sites is not new. This
concept has been known as grid computing in UNICORE project,9,10 which was launched in 1999 in an
attempt to integrate several German HPC sites and make them accessible to users as one resource as shown in
Figure 1. The difference between the UNICORE project and a smart city network of things is that the number
of individual sites in UNICORE is much smaller and the processing power in each of them is vastly larger than
what we see in IoT nodes. Another significant difference between a grid and a smart city is that the hardware
in a computing grid is more likely to be heterogeneous.11,12

The rest of the paper is organized as follows. Section 2 describes the methodology that was used in this
project. First, the concept of mapReduce which is the most popular paradigm in big data processing is briefly
explained. Then, JADE, a framework for developing FIPA (IEEE foundation for Intelligent Physical Agents)
compliant agents based on Java, is introduced. This is the framework used for developing the testbed that is
explained in Section 3. Section 4 discusses the preliminary results of the testbed performing a simple task of
aggregation. At last, the paper is concluded in Section 5.

Figure 1. The schematic of a grid computing platform. The aim of the platform is to present geographically distributed
processing resources as one resource to the end users.
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2. METHODOLOGY

This section explains the approach taken for minimizing the communication necessary between the parties in an
IoT network by utilizing the latent processing power in the lower level nodes of the network. In this context, a
node is an object with specific dedicated processing power, dedicated sensor (or set of sensors), storage capacity,
and ability to make decisions in its domain of influence. Here, the technology of choice for implementing the
nodes is JADE (Java Agent Development) framework, which is a Java application programming interface (API).
A brief explanation on capabilities of this API is offered in subsection 2.2. Then the topology of the network is
explained in subsection 3.

2.1 Map Reduce model

This scheme implements a version of MapReduce programming model13 that exploits the mostly idle processing
power that is local to the sensor data. The MapReduce process is done in five main steps that will execute in
sequence. Each step will start after the previous one finishes successfully. However, the tasks within each step
may be executed in parallel to improve performance:

1. The MapReduce platform assigns a chunk of the total data to mapper servers and provides them with the
data.

2. Each of the mapper servers applies the user defined Map function to the assigned data. The data is in
form of a list of pairs as (key1, value1). The output of this phase is another pairs of keys and list of values
as (key2, list(value2)).

3. The mappers shuffle the processed output to the reducer servers. The pairs with the same keys coming
from different mappers will go to the same reducer.

4. The reducers apply the user defined Reduce() function to the processed data. The input to each call of
the Reduce() function is the output of the last step, which is a key and a list of values. The output is a
smaller list of values. Mostly just one or zero outputs is expected from each call of the function.13

The output of the reduce step will be used to produce the final output of the process. It has to be noted that
the domains from which key1 and value1 are drawn are different than the domain of key2 and value2.

As an example, consider that the data on the make and model of cars that are passing specific checkpoints is
available at all the entrances into the city. Each entrance has a set of embedded sensors that can recognize and
record the make and model of all the passing cars. The user wants to know the overall count of the cars entering
and exiting the city grouped by their model. In one approach, each embedded sensor will send all its records in
batches to the command center for storage and process in specific periods (like every day, or twice a day). This
data will be processed using a MapReduce pair of functions at the command center. Another approach is to use
the embedded sensors to aggregate their records and send a ”summary” of the data, formatted in the way that
the command center requires, back to the command center. Each summary will be the result of each embedded
sensor applying the MapReduce pair to the batch of data that it has available locally. The summaries need to
be reduced one more step at the command center to form the final result. There are several advantages to this
approach:

1. The summary sent to the command center is far smaller in size than the data from which it is produced.

2. The processing power of all the embedded sensors are used in the process. In addition, each sensor will
process a smaller batch of data.

This is a step in the direction of using all the processing and communication capacity that the network has to
offer, shifting the load (both in terms of process and communication) away from the central elements to free
them up so that they can handle larger networks.
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2.2 JADE framework

JADE14 is a framework implemented in Java for conveniently and dynamically implement multi-agent systems.
It is compliant to the specifications of IEEE Foundation for Intelligent Physical Agents (FIPA), which provides
standards to facilitate the interoperability of end-to-end intelligent agents.15 There are several advantages to
using JADE for this case:

• High level abstraction of functionality: JADE framework provides the tools necessary for developing
agents and establishing communication between the agents by hiding away the implementation of such
functionalities from the developer so that the designers and developers can focus on the issues specific to
their use case.

• FIPA compliance: The FIPA standards are compiled by a body of experts, which gives the developers
the prospect of agreeing on a defined set of rules. This means the systems developed using JADE can
interact conveniently with any other system that is compliant to the same set of standards.

• Platform agnostic: JADE is written in Java and therefore runs on Java Virtual Machine (JVM). This
means that the implementation can work seamlessly on any operating system (OS). The agents do not
have to run on the same OS or the same hardware. Any system capable of running JVM and connecting
to internet can start a JADE platform or subscribe to one regardless of the location of the other members
of the platform. This is an important feature for the Internet of Things systems where we have several
types of hardware interacting with each other.

• Open source: JADE development is an ongoing project that is open to the contributions of the community,
which provides continuous modifications and optimization as JADE becomes more popular with Java
developers.

Network

JVM JVM JVM

Jade main
container Jade container Jade container

Agent
management

system 
(AMS)

Directory
Facilitator

(DF)

Agent1

Machine1 Machine2 Machine3

Agent2 Agent3 Agent4 Agent5 Agent6 Agent7

Jade Platform

Figure 2. The overall structure of a notional JADE platform that resides on three separate machines and manages seven
agents. The communication between the agents is done through the network and is set up by the JADE platform.
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Figure 3. The topology of the system that was used in this project. The platform consists of three groups of agents who
communicate together before reporting their aggregated data to the command center, represented here with Agent0.

Figure 2 shows an overview of a notional JADE platform implemented on three machines that are connected
to each other through a network. The agents reside within specific JADE objects called ”containers.” Each JADE
platform must have a Main container, an Agent Management System (AMS) object, and a Directory Facilitator
(DF) according to FIPA specifications. These two objects are automatically generated by JADE at the startup
of the platform. AMS is responsible for providing white page services, which involves supervision over the access
to the agent platform, bookkeeping on the name and location of the agents. The DF provide yellow page services,
which involves management of the access and location, and registration of the services within the platform. The
agents can register their services (which they are capable of providing to the rest of the platform) with the DF.
They can also find agents that can provide specific services using DF yellow page services. User defined agents
can be instantiated within the Main container as well. In Figure 2, Agent 1 and Agent 2 are such agents.

Agents which reside on other machines need to be instantiated within a peripheral JADE container that
would connect to the JADE platform by subscribing to the main container. Machine 2 and Machine 3 in Figure
2 have their own containers running on their own JVM. The JADE containers, along with the agents inside
them, are still considered within the domain on the JADE platform. In this figure, the JVM and the network
are depicted outside this domain since they are running independent of the existence of the platform altogether.
Any agent, or container (excluding the main container) can be started or destroyed dynamically as the JADE
platform runs. However, destroying the main container means the JADE platform is shutting down.

More information about the insides of JADE framework and how to set up an effective platform is available
on JADE website15 and JADE white paper.14

3. DESCRIPTION OF THE TESTBED

Figure 3 shows the topology of the testbed. It consists of three groups of agents arranged in clusters with
different sizes. Each cluster has a cluster head that takes the requests from teh command center and distributes
it to the other agents in the cluster. The agents will process their own gathered data based on the request from
the command center and send the result of the process to the cluster head. The cluster head will generate the
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collective response of the cluster to the request and sends it to the command center. The command center will
stitch the responses from all the clusters and gets the final result of the request that comes from the process
done by all the agents in the network.

The cluster head are the agents that generally have more processing power and storage capacity than all the
other agents of the cluster. This will give them the ability to redundantly store the data of all the other agents
in the cluster. The storage of the cluster data in cluster head will give the cluster one layer of redundancy in
case one of the agents becomes unavailable. Since the communication of the agent data with the cluster head
happens within the cluster, this will not occupy bandwidth of the command center. The command center agent
runs on a PC. All other agents run on individual Raspberry Pi cards with 16 GB storage.

The data used in this case is the 199523 records of Census income from 1994 an 1995.16 The task is to get
the average age of the records in the dataset. The age is the first column of the data and the data is divided
between each agent in a random fashion. The number of records per agent is not equal but it is close to 1/12 of
the whole number of records. The response of each agent to the request for mean value of the age column is a
JSON object. This object contains:

• Request ID: so that the command center can distinguish between multiple response coming at the same
time

• Type of the request: for debugging purposes

• Name of the agent: for debugging and documentation purposes

• Type of the agent: This property determines whether the response is at the agent level or the cluster
level

• Result object: This object contains the mean value and the number of records from which the mean
value is calculated. The number of records is used at the higher levels to stitch the results together

This information will travel up to the command center so the final result will be the average value of the first
column that is calculated by the whole network where each agent has access to one part of the data only.

the cluster heads have two groups of processes. One group for the tasks regarding gathering sensor data and
managing data storage. Another group for the tasks related to the management of cluster such as communicating
with the agents within the cluster, forming the collective response of the cluster to the command center request,
and communicating that response to the command center.

4. RESULTS & DISCUSSION

Table 1 tabulates the preliminary results obtained from the third cluster of the testbed. Each agent, including
the cluster head will report the result of the process over their own designated piece of data to the cluster head.
Agent31 is the cluster head of the third cluster. That is why there are two rows in the table dedicated to that
agent. One for its response as an individual agent, and one for its response as the cluster head (row 5). The
responses are in the form of JavaScript Object Notation (JSON).17 This is the JSON response of the Agent31
as an agent:

Table 1. The results of the cluster 3 agents and the cluster head that aggregates all the individual

agent name Output Record Count Size of data
Size of the response
(Characters)

Agent31 34.6025 16270 8.2 MB 152
Agent32 34.3037 15910 8.1 MB 152
Agent33 34.8817 15824 8.0 MB 152
Agent34 34.6380 17590 8.9 MB 152
Cluster3 34.6069 65594 N/A 160
Agent0 34.4942 199523
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{

"requestId":1000000012,

"type":"mean",

"agent_type":"node",

"name":"agent31",

"response":{

"records": 16270,

"value": 34.6025

}

}

Each agent in the cluster sends an object in this form to the cluster head. This is the JSON response of Agent31
as the cluster head:

{

"requestId":1000000012,

"type":"mean",

"agent_type":"clusterHead",

"name":"cluster3",

"response":{

"records": 65594

"value": 34.6069

}

}

The last two columns on table 1 show a comparison between the size of the response that is sent to the higher
level to the size of the data that is processed.

5. CONCLUSION AND FUTURE WORK

This paper suggests that passing portions of processing burden to the lower level nodes and closer to the data
generation location can free up the bandwidth of the command center (where the decisions are made based on
the data gathered from the city). The results show a drastic fall in the volume of the data that needs to be
communicated with the command center when aggregating the data from a large number of nodes. This reduction
can increase the scalability of the network by releasing the limited resource of command center bandwidth, which
can be, if not managed properly, a major bottleneck.

Although this approach can reduce the network load on the command center bandwidth, serious questions
will remain open. One question is how and with what rate the data is generated. In the case of nodes with
regular reading, the rate of data generation is known and manageable. However, if the data generation depends
on occurrence of a specific event, the rate can be represented using statistical models. The specifics of such
models and the systematic approach for developing them need to be investigated.

One assumption that was made in this paper was that the nodes knew what sort of preprocessing is going
to be done on the data. In reality, this will depend on what part of the data is relevant in the grand scheme
of things, which is only known by the command center and is communicated to the lower level nodes. In fact,
determining what part of the whole processing pipeline can be passed to the lower level nodes (and how to
achieve that) has to be decided by the command center.

The other assumption that we made about the network was that the hubs where the results of lower level
aggregations are gathered are known based on a prior design decision, which may not be the case in a real network.
The choice of hubs based on their physical location, their proximity to the command center, their processing and
data storage capacities, and their own bandwidth can affect the overall processing time. More research needs
to be done on formulating the problem of hub choice and optimizing the choice for speed, robustness, or data
management objectives.
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